![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值
Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为6565....
Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为6565.
展开
展开全部
由题意知,四边形AFPE是矩形,
∵点M是矩形对角线EF的中点,则延长AM应过点P,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AM有最小值,
此时AM=
AP,由勾股定理知BC=
=5,
∵S△ABC=
AB?AC=
BC?AP,
∴AP=
=
,
∴AM=
AP=
.
∵点M是矩形对角线EF的中点,则延长AM应过点P,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AM有最小值,
此时AM=
1 |
2 |
AB2+AC2 |
∵S△ABC=
1 |
2 |
1 |
2 |
∴AP=
3×4 |
5 |
12 |
5 |
∴AM=
1 |
2 |
6 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询