
请教:一道微分方程,求思路或过程,,,
2个回答
展开全部
解这道微分方程的关键是换元,一换元就豁然开朗了
解:
令m=e^x, n=e^y,则dx=dm/m, dy=dn/n
原方程变为:dn/n*m/dm=m^2*n
即:n^(-2)*dn=m*dm
两边积分,得-1/n=1/2*m^2+C,其中C为常数
即:m^2+2n^(-1)=C
因此,e^(2x) + 2e^(-y) = C
解:
令m=e^x, n=e^y,则dx=dm/m, dy=dn/n
原方程变为:dn/n*m/dm=m^2*n
即:n^(-2)*dn=m*dm
两边积分,得-1/n=1/2*m^2+C,其中C为常数
即:m^2+2n^(-1)=C
因此,e^(2x) + 2e^(-y) = C

2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询