定积分求极限有关问题
1/n[ln(1+1/n)+ln(1+2/n)+……+ln(1+(n-1)/n)]=∫(1,0)ln(1+x)dx定积分求极限是n从1到n的和等于定积分,为什么此题n从1...
1/n[ln(1+1/n)+ln(1+2/n)+……+ln(1+(n-1) / n)]
=∫(1,0)ln(1+x)dx 定积分求极限是n从1到n的和等于定积分,为什么此题n从1到n-1也等于0到1的定积分?为什么? 展开
=∫(1,0)ln(1+x)dx 定积分求极限是n从1到n的和等于定积分,为什么此题n从1到n-1也等于0到1的定积分?为什么? 展开
1个回答
展开全部
首先你给的等式是不对的,等式左边应该有个极限符号,当n趋向于无穷大的时候,你的等式才成立。
然后再看等式,你可以将等式反过来看,从定积分的几何意义出发,该定积分的几何意义是以y=ln(1+x)为曲边、y=0、x=1围成的曲边三角形的面积;极限意义就是指将这个曲边三角形的底分成n等份,得到n个曲边梯形,等式左边的各项就是指各个曲边梯形的面积,即曲边梯形面积之和。
当n趋向于无穷大时,曲边梯形近似为矩形,则矩形面积为宽乘以高;当矩形的高取左边那条时,极限表示为1/n[ln(1+0/n)+ln(1+1/n)+......+ln(1+(n-1)/n)](其中n趋向于无穷大),即你所说的n从0到n-1;当矩形的高取右边那条时,极限表示为1/n[ln(1+1/n)+ln(1+1/n)+......+ln(1+n/n)](其中n趋向于无穷大),即你所说的n从1到n。
然后再看等式,你可以将等式反过来看,从定积分的几何意义出发,该定积分的几何意义是以y=ln(1+x)为曲边、y=0、x=1围成的曲边三角形的面积;极限意义就是指将这个曲边三角形的底分成n等份,得到n个曲边梯形,等式左边的各项就是指各个曲边梯形的面积,即曲边梯形面积之和。
当n趋向于无穷大时,曲边梯形近似为矩形,则矩形面积为宽乘以高;当矩形的高取左边那条时,极限表示为1/n[ln(1+0/n)+ln(1+1/n)+......+ln(1+(n-1)/n)](其中n趋向于无穷大),即你所说的n从0到n-1;当矩形的高取右边那条时,极限表示为1/n[ln(1+1/n)+ln(1+1/n)+......+ln(1+n/n)](其中n趋向于无穷大),即你所说的n从1到n。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询