1个回答
展开全部
对于固定的x, a<=t<=x<b.
当h充分小时,总有,a<a+h<=t+h<=x+h<b.
f(x), f(x+h)在[a,b]上连续。
g(h) = S_{t:a->x}f(t+h)dt,
u = t+h, t:a->x, u:a+h->x+h. du=dt.
g(h) = S_{u:a+h->x+h}f(u)du, h充分小时,g(h)可导。
g'(h) = f(x+h) - f(a+h).
f(x)连续,因此,lim_{h->0+}[f(x+h) - f(a+h)] = f(x) - f(a) = N = g'(0+)
M = lim_{h->0+}S_{t:a->x}[f(t+h) - f(t)]dt/h = lim_{h->0+}[g(h) - g(0)]/h = g'(0+) = N
答案B
当h充分小时,总有,a<a+h<=t+h<=x+h<b.
f(x), f(x+h)在[a,b]上连续。
g(h) = S_{t:a->x}f(t+h)dt,
u = t+h, t:a->x, u:a+h->x+h. du=dt.
g(h) = S_{u:a+h->x+h}f(u)du, h充分小时,g(h)可导。
g'(h) = f(x+h) - f(a+h).
f(x)连续,因此,lim_{h->0+}[f(x+h) - f(a+h)] = f(x) - f(a) = N = g'(0+)
M = lim_{h->0+}S_{t:a->x}[f(t+h) - f(t)]dt/h = lim_{h->0+}[g(h) - g(0)]/h = g'(0+) = N
答案B
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询