如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解

如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积... 如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由. 展开
 我来答
凝帝系列9uIn稯
推荐于2016-04-18 · TA获得超过258个赞
知道答主
回答量:176
采纳率:100%
帮助的人:67万
展开全部
解:(1)①由题意,  解得
 所以C(4,4)
②把y=0代入y=﹣2x+12得,x=6,
所以A点坐标为(6,0),
所以  .
(2)存在;由题意,在OC上截取OM=OP,连接MQ,
∵OP平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.
∵AB⊥OP,
所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,
所以AM=2×6÷4=3,
∴AQ+PQ存在最小值,最小值为3.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式