如图1,四边形ABCD是正方形,G在BC的延长线上,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且A

如图1,四边形ABCD是正方形,G在BC的延长线上,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=EF,连接CF.(1)求证:∠FCG=45°;(... 如图1,四边形ABCD是正方形,G在BC的延长线上,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=EF,连接CF.(1)求证:∠FCG=45°;(2)如图2,当四边形ABCD是矩形,且AB=2AD时,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=2EF,连接CF,求tan∠FCG的值. 展开
 我来答
iwac273
推荐于2016-06-30 · TA获得超过211个赞
知道答主
回答量:118
采纳率:0%
帮助的人:120万
展开全部
作FH⊥CG与H.
∵∠AEF=90°,
∴∠AEB+∠FEH=90°,
又∵∠BAE+∠AEB=90°,
∴∠FEH=∠EAB,
又∵∠B=∠EHF,
且AE=EF,
∴△ABE≌△EHF,
∴BE=HF,
BC=AB=EH,
∴EH-EC=BC-EC,
∴BE=CH,
∴CH=HF.
∴∠FCH=∠CFH=
180°?90°
2
=45°;

(2)作FI⊥EG与I.
∵∠AEF=90°,
∴∠AEB+∠FEI=90°,
又∵∠BAE+∠AEB=90°,
∴∠FEI=∠EAB,
又∵∠B=∠EIF,
∴△ABE∽△EIF,
EI
AB
=
EF
AE
=
1
2

即EI=
1
2
AB,
故EI=AD=BC,
∴BE=CI,
∴tan∠FCG=
FI
IC
=
FI
BE
=
FE
AB
=
1
2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式