已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:给出下列四个命题:①方程g[g(x)]=0有且仅有3个

已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:给出下列四个命题:①方程g[g(x)]=0有且仅有3个根②方程g[f(x)]=0有且仅有4个根③方程f[f... 已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:给出下列四个命题:①方程g[g(x)]=0有且仅有3个根 ②方程g[f(x)]=0有且仅有4个根 ③方程f[f(x)]=0有且仅有5个根 ④方程f[g(x)]=0有且仅有6个根.其中正确的命题的序号是______. 展开
 我来答
狣醣
推荐于2016-09-16 · 超过54用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:131万
展开全部
由图象可得-2≤g(x)≤2,-2≤f(x)≤2,
①由于满足方程g[g(x)]=0 的g(x)值有2个,
而结合图象可得,每个g(x)值对应2个不同的x值,
故满足方程g[g(x)]=0 的x值有4个,
即方程g[g(x)]=0有且仅有4个根,故①不正确;
②满足g(x)=0的有两个,一个值处于-2与-1间,另一个值处于0与1间,由图象可知,满足f(x)值为该两值的有1+3=4个点,因此该方程有且仅有4个根.
故②正确.
③由于满足方程f[f(x)]=0的f(x)有3个不同的值,从图中可知,一个f(x)等于0,
一个f(x)∈(-2,-1),一个f(x)∈(1,2).
而当f(x)=0对应了3个不同的x值;当f(x)∈(-2,-1)时,只对应一个x值;
当f(x)∈(1,2)时,也只对应一个x值.
故满足方程f[f(x)]=0的x值共有5个,故③正确.
④由于满足方程f[g(x)]=0 的g(x)有三个不同值,由于每个值g(x)对应了2个x值,
故满足f[g(x)]=0的x值有6个,即方程f[g(x)]=0有且仅有6个根,故④正确.
故答案为:②③④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式