
求证:不论m取何值时,关于x的方程(2m-1)x的平方-2mx+1=0总有实数根
4个回答
展开全部
(2m-1)x的平方-2mx+1=0
△=4m²-4(2m-1)
=4m²-8m+4
=4(m-1)²≥0
所以 不论m取何值时,关于x的方程(2m-1)x的平方-2mx+1=0总有实数根
△=4m²-4(2m-1)
=4m²-8m+4
=4(m-1)²≥0
所以 不论m取何值时,关于x的方程(2m-1)x的平方-2mx+1=0总有实数根

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
(2m-1)x²-2mx+1=0
根的判别式=4m²-4(2m-1)=4m²-8m+4=4(m-1)²>=0
所以 方程有实数根
根的判别式=4m²-4(2m-1)=4m²-8m+4=4(m-1)²>=0
所以 方程有实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把x=1代入,无论m为何值等式恒成立。所以必有实根x=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
判别式=4m平方﹣4(2m﹣1)=(2m﹣2)平方>=0所以定有实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询