设f(x)=ax∧3+bx∧2+cx在x=x0处取得极小值-8,其导函数y=f '(x)的图像经过点(-2,0),(2/3 , 0)

设f(x)=ax∧3+bx∧2+cx在x=x0处取得极小值-8,其导函数y=f'(x)的图像经过点(-2,0),(2/3,0)(2)若对X∈[-3,3]都有f(x)≥m∧... 设f(x)=ax∧3+bx∧2+cx在x=x0处取得极小值-8,其导函数y=f '(x)的图像经过点(-2,0),(2/3 , 0)

(2)若对X∈[-3 ,3]都有f(x)≥m∧2-14m恒成立,求实数m的取值范围?
函数开口向下 = = 原函数算出来是这个f(x)=-x∧3-2x∧2+4x
展开
百度网友04a0473
2012-03-10 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2534
采纳率:0%
帮助的人:1045万
展开全部
f'(x)=3ax²+2bx+c
so
12a-4b+c=0
4a/3+4b/3+c=0
解得
b=2a,c=-4a
f'(x)=3ax²+4ax+-4a=a(x+2)(2x-3)
f(x)=ax^3+2ax²-4ax
f(-2)=-8a+8a+8a=8a=-8
a=-1
f(x)=-x^3-2x²+4x
X∈[-3 ,3]
f(-3)=27-18-12=-3
f(3)=-27-18+12=-33
f(2/3)=40/27
在[-3,3], f(x)min=-33, f(x)max=40/27
对X∈[-3 ,3]都有f(x)≥m∧2-14m恒成立
m²-14m≤-33
m²-14m+33≤0
3≤m≤11
灵敏又犀利灬鱼丸244
2012-06-20 · TA获得超过7万个赞
知道大有可为答主
回答量:4.2万
采纳率:0%
帮助的人:5560万
展开全部
(1)解:根据题意得:
f'(x)=3ax^2+2bx+c
∵图像经过点(-2,0)(2/3.0),f(-2)=-8
∴12a-4b+c=0
4/3a+4/3b+c=0
-8a+4b-2c=-8
∴a=-1,b=-2,c=4
所以f(x)=-x^3-2x^2+4x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式