求好心人!
1个回答
展开全部
a1=1 ,a(n+1)=1-(1/4an) ,bn=2/[2an-1]
a(n+1)=(4an-1)/4an
2a(n+1)=(4an-1)/2an
2a(n+1)-1=[(4an-1)/2an]-1
2a(n+1)-1=[(2an-1)/2an]
倒数得
1/[2a(n+1)-1]=2an/(2an-1)
1/[2a(n+1)-1]=1+[1/(2an-1)]
1/[2a(n+1)-1]-[1/(2an-1)]=1
{1/(2an-1)}是等差数列
1/(2an-1)=1/(2a1-1)+n-1=1/(2-1)+n-1=n
1/(2an-1)=n
an=(n+1)/2n
bn-b(n-1)=2/(2an-1)-2/[2a(n-1)-1]=2[1/(2an-1)-1/[2a(n-1)-1]
=2{1/[(n+1)/n-1]-1/1/[n/(n-1)-1]}
=2[n-(n-1)]
=2
所以,bn-b(n-1)=2
{bn}是等差数列
2)Cn=4an/(n+1)=4(n+1)/2n(n+1)=2/n
Cn=2/n
CnC(n+2)=2/n*2/(n+2)=4/n(n+2)=2[1/n-1/(n+2)]
Tn=2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+...+1/n-1/(n+2)]
Tn=2[1+1/2-1/(n+1)-1/(n+2)]=2[3/2-(2n+3)/(n^2+3n+2)
Tn=3-[(2n+3)/2(n^2+3n+2)]<3
所以Tn<3
a(n+1)=(4an-1)/4an
2a(n+1)=(4an-1)/2an
2a(n+1)-1=[(4an-1)/2an]-1
2a(n+1)-1=[(2an-1)/2an]
倒数得
1/[2a(n+1)-1]=2an/(2an-1)
1/[2a(n+1)-1]=1+[1/(2an-1)]
1/[2a(n+1)-1]-[1/(2an-1)]=1
{1/(2an-1)}是等差数列
1/(2an-1)=1/(2a1-1)+n-1=1/(2-1)+n-1=n
1/(2an-1)=n
an=(n+1)/2n
bn-b(n-1)=2/(2an-1)-2/[2a(n-1)-1]=2[1/(2an-1)-1/[2a(n-1)-1]
=2{1/[(n+1)/n-1]-1/1/[n/(n-1)-1]}
=2[n-(n-1)]
=2
所以,bn-b(n-1)=2
{bn}是等差数列
2)Cn=4an/(n+1)=4(n+1)/2n(n+1)=2/n
Cn=2/n
CnC(n+2)=2/n*2/(n+2)=4/n(n+2)=2[1/n-1/(n+2)]
Tn=2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+...+1/n-1/(n+2)]
Tn=2[1+1/2-1/(n+1)-1/(n+2)]=2[3/2-(2n+3)/(n^2+3n+2)
Tn=3-[(2n+3)/2(n^2+3n+2)]<3
所以Tn<3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询