在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=6√3,E是PB上
解:
菱形ABCD ==> BD⊥AC
PD⊥平面ABCD ==> PD⊥AC
==> AC⊥平面PDB;PB⊥AC
设菱形对角线AC,BD交点为O,则有 OE 在平面PDB上 ==> OE⊥AC
AC = 6,当OE最小时,△AEC面积的最小,此时OE⊥PB;
S△AEC = 1/2 * AC* OE = 9 ==>OE =18/AC =3;
∵ AC=6 ==> OA =OC = 3;==> OA=OC=OE
∴ △AOE 与 △COE 均为等腰直角三角形
∴ ∠AEC = ∠AEO + ∠CEO =90°
PB⊥AC;OE⊥PB ==> PB⊥平面AEC
==> PB⊥AE;PB⊥CE
∴ ∠AEC为平面PAB 与平面PBC的二面角==> 平面PAB⊥平面PBC
PB为平面PAB与平面PBC的交线,则GE与PB的夹角即是GE与平面PAB的夹角;
OC =3;OB =1/2*BD =3√3 ==〉BC = √(OB²+OC²) = 6;
在等腰 Rt △COE 中:CE =√2OC = 3√2
PB⊥CE ==>Rt△BCE中 ==> BE=√(BC² - CE²) = 3√2
∴ △BCE 为等腰直角三角形 ==> ∠EBC =45°
在 △BGE中过点G作 GF⊥AE于F,则有:
GF/tan∠EBC + GF/tan∠BEG = BE ==> GF/1 + GF/2 =3√2
==> GF = 2√2
BG = √2GF = 4;
因此:
线段BC上是存在点G使EG与面PAB所成角的正切值为2,此时BG=4