z=arctan(x+y)/(x-y)的全微分
3个回答
展开全部
z=arctan(x+y)/(x-y)
z'x=[(1+y')/(1+(x+y)^2)] /(x-y) +arctan(x+y)(1-y')/(x-y)^2
z'y=[(1+x')/(1+(x+y)^2]/(x-y)+arctan(x+y)(x'-1)/(x-y)^2
dz=z'x dx+ z'y dy
z'x=[(1+y')/(1+(x+y)^2)] /(x-y) +arctan(x+y)(1-y')/(x-y)^2
z'y=[(1+x')/(1+(x+y)^2]/(x-y)+arctan(x+y)(x'-1)/(x-y)^2
dz=z'x dx+ z'y dy
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-14
展开全部
(-ydx+xdy)/(x^2+y^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询