![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
线性代数 向量组的秩。证明题
1个回答
展开全部
R(I)=3,所以a1,a2,a3.
R(II)=3,所以a1,a2,a3,a4线性无关。
根据定理,a4可以由a1,a2,a3线性表示,且表示式唯一。
设a4=k1a1+k2a2+k3a3.
R(a1,a2,a3,a5-a4)=R(a1,a2,a3,a5-a4+(k1a1+k2a2+k3a3))=R(a1,a2,a3,a5)=4.
R(II)=3,所以a1,a2,a3,a4线性无关。
根据定理,a4可以由a1,a2,a3线性表示,且表示式唯一。
设a4=k1a1+k2a2+k3a3.
R(a1,a2,a3,a5-a4)=R(a1,a2,a3,a5-a4+(k1a1+k2a2+k3a3))=R(a1,a2,a3,a5)=4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询