线性代数 向量组的秩。证明题

 我来答
夜色_扰人眠
2015-10-13 · TA获得超过1873个赞
知道大有可为答主
回答量:978
采纳率:0%
帮助的人:1044万
展开全部
R(I)=3,所以a1,a2,a3.

R(II)=3,所以a1,a2,a3,a4线性无关。
根据定理,a4可以由a1,a2,a3线性表示,且表示式唯一。
设a4=k1a1+k2a2+k3a3.
R(a1,a2,a3,a5-a4)=R(a1,a2,a3,a5-a4+(k1a1+k2a2+k3a3))=R(a1,a2,a3,a5)=4.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式