1个回答
展开全部
解:令Sn=sin(π/√(n^2+1)) +..... +sin(π/√(n^2+n))
∵Sn<sin(π/√(n^2+0)) +..... +sin(π/√(n^2+0))=n*sin(π/n)
Sn>sin(π/√(n^2+n)) +..... +sin(π/√(n^2+n))=n*sin(π/√(n^2+n))
∴n*sin(π/√(n^2+n))<Sn<n*sin(π/n)
∵lim(n->∞)[n*sin(π/√(n^2+n))]
=lim(n->∞)[(nπ/√(n^2+n))*(sin(π/√(n^2+n))/(π/√(n^2+n)))]
={lim(n->∞)[nπ/√(n^2+n)]}*{lim(n->∞)[sin(π/√(n^2+n))/(π/√(n^2+n))]}
={lim(n->∞)[nπ/√(n^2+n)]}*1 (应用重要极限lim(z->0)(sinz/z)=1)
=lim(n->∞)[π/√(1+1/n)] (分子分母同除n)
=π/√(1+1/n)=π,
lim(n->∞)[n*sin(π/n)]=lim(n->∞){π*[sin(π/n)/(π/n)]}
=π*{lim(n->∞)[sin(π/n)/(π/n)]}
=π*1 (应用重要极限lim(z->0)(sinz/z)=1)
=π
∴π=lim(n->∞)[n*sin(π/√(n^2+n))]<lim(n->∞)Sn<lim(n->∞)[n*sin(π/n)]=π
即由两边夹定理,得lim(n->∞)Sn=π
故lim(n->∞)[sin(π/√(n^2+1)) +..... +sin(π/√(n^2+n))]=π。
∵Sn<sin(π/√(n^2+0)) +..... +sin(π/√(n^2+0))=n*sin(π/n)
Sn>sin(π/√(n^2+n)) +..... +sin(π/√(n^2+n))=n*sin(π/√(n^2+n))
∴n*sin(π/√(n^2+n))<Sn<n*sin(π/n)
∵lim(n->∞)[n*sin(π/√(n^2+n))]
=lim(n->∞)[(nπ/√(n^2+n))*(sin(π/√(n^2+n))/(π/√(n^2+n)))]
={lim(n->∞)[nπ/√(n^2+n)]}*{lim(n->∞)[sin(π/√(n^2+n))/(π/√(n^2+n))]}
={lim(n->∞)[nπ/√(n^2+n)]}*1 (应用重要极限lim(z->0)(sinz/z)=1)
=lim(n->∞)[π/√(1+1/n)] (分子分母同除n)
=π/√(1+1/n)=π,
lim(n->∞)[n*sin(π/n)]=lim(n->∞){π*[sin(π/n)/(π/n)]}
=π*{lim(n->∞)[sin(π/n)/(π/n)]}
=π*1 (应用重要极限lim(z->0)(sinz/z)=1)
=π
∴π=lim(n->∞)[n*sin(π/√(n^2+n))]<lim(n->∞)Sn<lim(n->∞)[n*sin(π/n)]=π
即由两边夹定理,得lim(n->∞)Sn=π
故lim(n->∞)[sin(π/√(n^2+1)) +..... +sin(π/√(n^2+n))]=π。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询