a1=2,an=2-1/an-1(n≥2),令bn=1/an-1

已知数列{an}满足a1=2,an=2-1/a(n-1)(n≥2),令bn=1/(an-1)求证:数列{bn}是等差数列... 已知数列{an}满足a1=2,an=2-1/a(n-1)(n≥2),令bn=1/(an-1)
求证:数列{bn}是等差数列
展开
xuzhouliuying
高粉答主

2012-03-12 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
证:
an=2-1/a(n-1)
an -1=1-1/a(n-1)=[a(n-1)-1]/a(n-1)
1/(an -1)=a(n-1)/[a(n-1)-1]=[a(n-1)-1+1]/[a(n-1)-1]=1+1/[a(n-1)-1]
1/(an -1)-1/[a(n-1)-1]=1,为定值。
1/(a1-1)=1/(2-1)=1
数列{1/(an -1)}是以1为首项,1为公差的等差数列。
又bn=1/(an -1),数列{bn}是以1为首项,1为公差的等差数列。
b1=1/(a1 -1)=1
bn=1+(n-1)=n
数列{bn}的通项公式为bn=n。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式