4个回答
展开全部
解 :
y=sin^4(x/4)+cos^4(x/4)
=4sin^3(x/4)*[sin(x/4)]'+4cos^3(x/4)*[cos(x/4)]'
=4sin^3(x/4)*cos(x/4)*(x/4)'-4cos^3(x/4)*sin(x/4)*(x/4)'
=sin^3(x/4)cos(x/4)-cos^3(x/4)sin(x/4)
=sin(x/4)cos(x/4)*[sin²(x/4)-cos²(x/4)]
=(1/2)sin(x/2)*[-cos(x/2)]
=(1/4)sinx
y=sin^4(x/4)+cos^4(x/4)
=4sin^3(x/4)*[sin(x/4)]'+4cos^3(x/4)*[cos(x/4)]'
=4sin^3(x/4)*cos(x/4)*(x/4)'-4cos^3(x/4)*sin(x/4)*(x/4)'
=sin^3(x/4)cos(x/4)-cos^3(x/4)sin(x/4)
=sin(x/4)cos(x/4)*[sin²(x/4)-cos²(x/4)]
=(1/2)sin(x/2)*[-cos(x/2)]
=(1/4)sinx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=sin^4(x/4)+cos^4(x/4)
=4sin^3(x/4)×cos(x/4)×1/4+4cos^3(x/4)×(-sin(x/4))×1/4
=sin(x/4)cos(x/4)[sin²x/4-cos²x/4]
=(sinx/2)/2×cos(x/2)
=(sinx)/2
=4sin^3(x/4)×cos(x/4)×1/4+4cos^3(x/4)×(-sin(x/4))×1/4
=sin(x/4)cos(x/4)[sin²x/4-cos²x/4]
=(sinx/2)/2×cos(x/2)
=(sinx)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询