设f(x)在x=0的邻域内有三阶导数,且x->0时,lim(1+x+f(x)/x)^(1/x)=e^3。求(1):f(0),f'(0).f''(0)
展开全部
1、条件等价于ln(1+x+f(x)/x)/x的极限是3。显然f(0)=0。另外,由于分母x趋于0,因此分子ln函数必趋于0,于是得x+f(x)/x趋于0,f(x)/x趋于0,即[f(x)-f(0)]/(x-0)趋于0,于是f'(0)=0。
利用Taylor展式得f(x)/x=f''(0)x^2/2+小o(x^2),因此
ln(1+x+f(x)/x^2)等价于x+f''(0)x/2,故极限值为1+f''(0)/2=3,解得f''(0)=4。
2、lim ln(1+f(x)/x)/x=lim ln(1+f''(0)x/2+小o(x))/x=lim 【f''(0)x/2+小o(x)】/x=f''(0)/2=2。
因此原极限为e^2
利用Taylor展式得f(x)/x=f''(0)x^2/2+小o(x^2),因此
ln(1+x+f(x)/x^2)等价于x+f''(0)x/2,故极限值为1+f''(0)/2=3,解得f''(0)=4。
2、lim ln(1+f(x)/x)/x=lim ln(1+f''(0)x/2+小o(x))/x=lim 【f''(0)x/2+小o(x)】/x=f''(0)/2=2。
因此原极限为e^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询