展开全部
原生金刚石是在地下深外处(130—180Km)高温(900—1300℃)高压(45—60)×108Pa下结晶而成的,它们储存在金伯利岩或榴辉岩中,其形成年代相当久远。南非金伯利矿,橄榄岩型钻石约形成于距今33亿年前,这个年龄几乎与地球同岁;而奥大利亚阿盖尔矿、博茨瓦纳奥拉伯矿,榴辉岩型的钻石虽说年轻,也分别已有15.8亿年和9.9亿年了。藏于如此大的地下深处达亿万年之久的钻石晶体要重见天日,得有助于火山喷发,熔岩流将含有钻石的岩浆带入至地球近地表处,或长途迁徒淀于河流沙土之中。前者形成的是原生管状矿,后者形成的则为冲积矿。这些矿体历经艰辛开采后,还需经过多道处理遴选,才可从中获怪毛坯金刚石。毛坯金刚石中仅有20%左右可作首饰用途的钻坯,而大部分只能用于切割、研磨及抛光等工业用途上。有人曾粗略地估算过,要得到1ct重的钻石,起码要开采处理250吨矿石,采获率是相当低的;如果想从成品钻中挑选出美钻,那两者的比率更是十分悬殊的了。?
已知现今世界上只有三十余个国家和地区产钻石,且分布极不均匀,主要集中在澳洲、非洲,次为亚洲和南美洲。其中澳大利亚、扎伊尔、博茨瓦纳、前苏联和南非为世界上五大钻石生产国,占全球钻坯供应量八成有多。
我国钻矿开发虽有着较长历史,清道光年间湘西桃源、常德一带、山东郯城区都先后发现过钻石。20世纪中叶湖南还找到过钻石砂矿。然而,钻石原生矿床60—70年代仅在辽宁瓦房店、山东蒙阴和贵州东部地区发现。?
物以稀为贵。综观当今世界,钻石分布范围小,产量低。加之开采困难,自然钻石就更显弥足珍贵了。一颗钻石,从孕育于地壳岩浆之中至佩戴于您的手上,辗转周游万里,途经数百人之手,个中开采、加工艰辛复杂,做成精致的饰品更是艺术的创造,最后又经您慧眼上识,佩戴,才再度炫耀于世,因此,这是一种何等奇特的福缘!
什么是人造金刚石
钻石由金刚石加工琢磨而成,是珠宝中的贵族,它通明剔透,散发着清冷高贵的光辉,颇有“出淤泥而不染”的气质。天然金刚石的形成和发现极为不易,它是碳在地球深部高温高压的特殊条件下历经亿万年的“苦修”转化而成的,由于地壳的运动,它们从地球的深处来到地表,蕴藏在金伯利岩中,从而被人类发现和开采。
金刚石不仅可以加工成价值连城的珠宝,在工业中也大有可为。它硬度高、耐磨性好,可广泛用于切削、磨削、钻探;由于导热率高、电绝缘性好,可作为半导体装置的散热板;它有优良的透光性和耐腐蚀性,在电子工业中也得到广泛应用。18世纪末,人们发现身价高贵的金刚石竟然是碳的一种同素异形体,从此,制备人造金刚石就成为了许多科学家的光荣与梦想。
一个世纪以后,石墨 ——碳的另一种单质形式被发现了,人们便尝试模拟自然过程,让石墨在超高温高压的环境下转变成金刚石。为了缩短反应时间,需要2 000 ℃高温和5.5万个大气压的特殊条件。
1955年,美国通用电气公司专门制造了高温高压静电设备,得到世界上第一批工业用人造金刚石小晶体,从而开创了工业规模生产人造金刚石磨料的先河,现在他们的年产量在20吨左右;不久,杜邦公司发明了爆炸法,利用瞬时爆炸产生的高压和急剧升温,也获得了几毫米大小的人造金刚石。
金刚石薄膜的性能稍逊于金刚石颗粒,在密度和硬度上都要低一些。即便如此,它的耐磨性也是数一数二,仅5微米厚的薄膜,寿命也比硬质合金钢长10倍以上。我们知道,唱片的唱针在微小的接触面上要经受极大的压力,同时要求极长的耐磨寿命,只要在针尖上沉积上一层金刚石薄膜,它就可以轻松上阵了。如果在塑料、玻璃的外面用金刚石薄膜做耐磨涂层,可以大大扩展其用途,开发性能优越又经济的产品。
更重要的是,薄膜的出现使金石的应用突破了只能作为切削工具的樊篱,使其优异的热、电、声、光性能得以充分发挥。目前,金刚石薄膜已应用在半导体电子装置、光学声学装置、压力加工和切削加工工具等方面,其发展速度惊人,在高科技领域更加诱人。
已知现今世界上只有三十余个国家和地区产钻石,且分布极不均匀,主要集中在澳洲、非洲,次为亚洲和南美洲。其中澳大利亚、扎伊尔、博茨瓦纳、前苏联和南非为世界上五大钻石生产国,占全球钻坯供应量八成有多。
我国钻矿开发虽有着较长历史,清道光年间湘西桃源、常德一带、山东郯城区都先后发现过钻石。20世纪中叶湖南还找到过钻石砂矿。然而,钻石原生矿床60—70年代仅在辽宁瓦房店、山东蒙阴和贵州东部地区发现。?
物以稀为贵。综观当今世界,钻石分布范围小,产量低。加之开采困难,自然钻石就更显弥足珍贵了。一颗钻石,从孕育于地壳岩浆之中至佩戴于您的手上,辗转周游万里,途经数百人之手,个中开采、加工艰辛复杂,做成精致的饰品更是艺术的创造,最后又经您慧眼上识,佩戴,才再度炫耀于世,因此,这是一种何等奇特的福缘!
什么是人造金刚石
钻石由金刚石加工琢磨而成,是珠宝中的贵族,它通明剔透,散发着清冷高贵的光辉,颇有“出淤泥而不染”的气质。天然金刚石的形成和发现极为不易,它是碳在地球深部高温高压的特殊条件下历经亿万年的“苦修”转化而成的,由于地壳的运动,它们从地球的深处来到地表,蕴藏在金伯利岩中,从而被人类发现和开采。
金刚石不仅可以加工成价值连城的珠宝,在工业中也大有可为。它硬度高、耐磨性好,可广泛用于切削、磨削、钻探;由于导热率高、电绝缘性好,可作为半导体装置的散热板;它有优良的透光性和耐腐蚀性,在电子工业中也得到广泛应用。18世纪末,人们发现身价高贵的金刚石竟然是碳的一种同素异形体,从此,制备人造金刚石就成为了许多科学家的光荣与梦想。
一个世纪以后,石墨 ——碳的另一种单质形式被发现了,人们便尝试模拟自然过程,让石墨在超高温高压的环境下转变成金刚石。为了缩短反应时间,需要2 000 ℃高温和5.5万个大气压的特殊条件。
1955年,美国通用电气公司专门制造了高温高压静电设备,得到世界上第一批工业用人造金刚石小晶体,从而开创了工业规模生产人造金刚石磨料的先河,现在他们的年产量在20吨左右;不久,杜邦公司发明了爆炸法,利用瞬时爆炸产生的高压和急剧升温,也获得了几毫米大小的人造金刚石。
金刚石薄膜的性能稍逊于金刚石颗粒,在密度和硬度上都要低一些。即便如此,它的耐磨性也是数一数二,仅5微米厚的薄膜,寿命也比硬质合金钢长10倍以上。我们知道,唱片的唱针在微小的接触面上要经受极大的压力,同时要求极长的耐磨寿命,只要在针尖上沉积上一层金刚石薄膜,它就可以轻松上阵了。如果在塑料、玻璃的外面用金刚石薄膜做耐磨涂层,可以大大扩展其用途,开发性能优越又经济的产品。
更重要的是,薄膜的出现使金石的应用突破了只能作为切削工具的樊篱,使其优异的热、电、声、光性能得以充分发挥。目前,金刚石薄膜已应用在半导体电子装置、光学声学装置、压力加工和切削加工工具等方面,其发展速度惊人,在高科技领域更加诱人。
zs
2023-06-10 广告
2023-06-10 广告
金刚线切割液一般是水性的,由多种表面活性剂、润滑剂和防锈剂组成,具有优秀的润滑、防锈、低泡和沉降性能,在切割过程提供快速冷却和润滑保护。有效延长线或锯片寿命,提高切割效率。金刚线切割液由于要求低泡,所以配方中表面活性剂常常以炔二醇聚氧乙烯醚...
点击进入详情页
本回答由zs提供
展开全部
金刚石形成条件
3.1碳源
形成金刚石的碳源认为有三种方式:金伯利岩、钾镁煌斑岩岩浆中的原生碳;捕俘围岩中的有机碳;地壳中碳酸盐岩中的碳。愈来愈多的资料证实金刚石碳主要来源于岩浆中的原生碳。
岩浆中都含有一定数量的原生游离碳,如金伯利岩浆中含碳量为1.9%~4.3%,超基性岩浆中含碳量为0.06%~0.10%,玄武岩浆中含碳量为0.02%~0.04%,因此金伯利岩中含金刚石量由原生碳提供是足够的。
金刚石碳同位素C12/C13,其比值与金伯利岩浆中原生碳C12/C13比值是近似的,前者为89.63,后者为89.00。
3.2温度、压力、时间
金刚石为高温、高压矿物,其中压力因素是主要的。人工合成金刚石实验证明压力、温度、时间是决定金刚石品级的重要因素,触媒剂具有一定的促进作用。
据实验资料,对金伯利岩主要矿物在压力,温度变化状态下稳定平衡图解说明,最适宜于金刚石结晶的压力条件为(50000~70000)×105pa,温度为1200~1800℃,金伯利岩岩浆在内成稳定阶段推论岩浆深度在150km左右是相适应的。
从金刚石-石墨平衡曲线分析,要使金刚石处于稳定状态保留下来,必须是压力降低而温度作适应性的转变,如果温度不变,压力迅速下降,金刚石则全部转化为石墨。
岩浆内提供金刚石结晶时间的长短,影响金刚石结晶颗度大小,在金伯利岩中金刚石品粒大小相差悬殊,这说明结晶单位的差异。
3.3构造封闭系统
金伯利岩浆要保持一定的压力、温度和一个良好的还原环境,在地质构造上必须是一封闭的、压(扭)性系统组成的上升通道。
地壳盖层是阻止金伯利岩浆膨胀阶段挥发组分向地表散失的重要条件,但盖层的厚薄又是决定金伯利岩中金刚石形成多少的因素之一。盖层较厚时金伯利岩浆内压力不能冲破围岩的阻力(上覆岩层的重力、岩石破裂临界压力),得到充分的膨胀,形成较大的岩体和形成大量第二世代金刚石,盖层较薄时又易使金伯利岩浆冲出地表形成喷出相岩石玻璃镁橄岩。
3.4金刚石形成相
金伯利岩浆演化过程中物理、化学条件变化证实:内成稳定阶段、侵入膨胀阶段具备金刚石的形成相条件。
3.4.1内成稳定金刚石相
金刚石在内成稳定阶段中由于压力、温度作用使岩浆结晶作用处于十分稳定状态,充足的原生碳、充分的结晶时间、金刚石晶芽大量生长,并成长为较大的平面八面体金刚石,这时岩浆基性程度很高,Ti元素尚为分散状态,由Ti所产生的制约金刚石生成的"触媒',作用,还不能阻止金刚石的生长。
岩浆转为侵入阶段后,金刚石完全处于熔蚀状态,第一世代平面八面体金刚石向浑圆状曲面菱形十二面体转化,因此在金伯利岩中曲面晶体及平面一曲面晶体代表了内成稳定金刚石相特征。
3.4.2膨胀金刚石相
据金伯利岩矿物实验数据认为,膨胀阶段的温度为1000~1500℃,瞬时膨胀所产生的压力达50000×105pa以上,为第二世代金刚石晶芽形成创造了条件,这一阶段形成的金刚石仍为平面八面体,由于结晶时间较短,岩浆碳源的相对减少,金刚石晶体不能得到充分生长;另一方面由于岩浆酸性程度显著增高,Ti元素的的富集和O元素接合力增大,制约着金刚石的生长,因此金刚石晶粒一般都在1mm以下,但金刚石具生长态,以阶梯状八面体为主,这种晶体特征代表了膨胀金刚石相特征。
在膨胀金刚石相中还有少量异形金刚石晶体形成,说明在内成稳定金刚石相中形成的曲面菱形十二面体金刚石细粒进入膨胀金刚石相后,以此作晶种继续沿结晶轴再生长,形成再生增长的阶梯状八面体为主的曲面菱形十二面体异形晶。
3.5岩筒相金刚石与岩脉相
金刚石岩筒相与岩脉相金伯利岩中金刚石的晶体形态是不一致的,岩筒相中出现大量平面八面体,阶梯状八面体金刚石,但岩脉相中则显著减少,这一特点也说明岩脉相没有经历强烈的膨胀阶段,这与岩脉产出状态是吻合的。
具有工业品级、宝石晶级的金刚石均为曲面晶体或平面-曲面晶体,这类金刚石无疑来源于内成稳定金刚石相,金伯利岩浆的运移是将这类金刚石从上地幔搬运到地壳的浅部,同时起着熔蚀作用、浑圆化作用。膨胀金刚石相虽能形成大量金刚石,但由于粒度十分细小,因此不可能提供宝石级的加工原料。
在金伯利岩浆的运移过程中,Eo·JI奥尔洛夫将金伯利岩中金刚石全部归于熔蚀论,而0.M安舍列斯则将金刚石全归于生长论,笔者认为金刚石在岩浆运移中形成生长相-熔蚀相-生长相这一变化过程,与岩浆的演化过程是一致的。
从部分金刚石的晶粒大小、形态类型、岩石产出状态的数理统计中可以说明岩脉相、岩筒相中金刚石特征。岩筒相、岩脉相大粒宝石级的金刚石都是曲面晶体,细粒级的都是平面八面体和阶梯状八面体。
3.1碳源
形成金刚石的碳源认为有三种方式:金伯利岩、钾镁煌斑岩岩浆中的原生碳;捕俘围岩中的有机碳;地壳中碳酸盐岩中的碳。愈来愈多的资料证实金刚石碳主要来源于岩浆中的原生碳。
岩浆中都含有一定数量的原生游离碳,如金伯利岩浆中含碳量为1.9%~4.3%,超基性岩浆中含碳量为0.06%~0.10%,玄武岩浆中含碳量为0.02%~0.04%,因此金伯利岩中含金刚石量由原生碳提供是足够的。
金刚石碳同位素C12/C13,其比值与金伯利岩浆中原生碳C12/C13比值是近似的,前者为89.63,后者为89.00。
3.2温度、压力、时间
金刚石为高温、高压矿物,其中压力因素是主要的。人工合成金刚石实验证明压力、温度、时间是决定金刚石品级的重要因素,触媒剂具有一定的促进作用。
据实验资料,对金伯利岩主要矿物在压力,温度变化状态下稳定平衡图解说明,最适宜于金刚石结晶的压力条件为(50000~70000)×105pa,温度为1200~1800℃,金伯利岩岩浆在内成稳定阶段推论岩浆深度在150km左右是相适应的。
从金刚石-石墨平衡曲线分析,要使金刚石处于稳定状态保留下来,必须是压力降低而温度作适应性的转变,如果温度不变,压力迅速下降,金刚石则全部转化为石墨。
岩浆内提供金刚石结晶时间的长短,影响金刚石结晶颗度大小,在金伯利岩中金刚石品粒大小相差悬殊,这说明结晶单位的差异。
3.3构造封闭系统
金伯利岩浆要保持一定的压力、温度和一个良好的还原环境,在地质构造上必须是一封闭的、压(扭)性系统组成的上升通道。
地壳盖层是阻止金伯利岩浆膨胀阶段挥发组分向地表散失的重要条件,但盖层的厚薄又是决定金伯利岩中金刚石形成多少的因素之一。盖层较厚时金伯利岩浆内压力不能冲破围岩的阻力(上覆岩层的重力、岩石破裂临界压力),得到充分的膨胀,形成较大的岩体和形成大量第二世代金刚石,盖层较薄时又易使金伯利岩浆冲出地表形成喷出相岩石玻璃镁橄岩。
3.4金刚石形成相
金伯利岩浆演化过程中物理、化学条件变化证实:内成稳定阶段、侵入膨胀阶段具备金刚石的形成相条件。
3.4.1内成稳定金刚石相
金刚石在内成稳定阶段中由于压力、温度作用使岩浆结晶作用处于十分稳定状态,充足的原生碳、充分的结晶时间、金刚石晶芽大量生长,并成长为较大的平面八面体金刚石,这时岩浆基性程度很高,Ti元素尚为分散状态,由Ti所产生的制约金刚石生成的"触媒',作用,还不能阻止金刚石的生长。
岩浆转为侵入阶段后,金刚石完全处于熔蚀状态,第一世代平面八面体金刚石向浑圆状曲面菱形十二面体转化,因此在金伯利岩中曲面晶体及平面一曲面晶体代表了内成稳定金刚石相特征。
3.4.2膨胀金刚石相
据金伯利岩矿物实验数据认为,膨胀阶段的温度为1000~1500℃,瞬时膨胀所产生的压力达50000×105pa以上,为第二世代金刚石晶芽形成创造了条件,这一阶段形成的金刚石仍为平面八面体,由于结晶时间较短,岩浆碳源的相对减少,金刚石晶体不能得到充分生长;另一方面由于岩浆酸性程度显著增高,Ti元素的的富集和O元素接合力增大,制约着金刚石的生长,因此金刚石晶粒一般都在1mm以下,但金刚石具生长态,以阶梯状八面体为主,这种晶体特征代表了膨胀金刚石相特征。
在膨胀金刚石相中还有少量异形金刚石晶体形成,说明在内成稳定金刚石相中形成的曲面菱形十二面体金刚石细粒进入膨胀金刚石相后,以此作晶种继续沿结晶轴再生长,形成再生增长的阶梯状八面体为主的曲面菱形十二面体异形晶。
3.5岩筒相金刚石与岩脉相
金刚石岩筒相与岩脉相金伯利岩中金刚石的晶体形态是不一致的,岩筒相中出现大量平面八面体,阶梯状八面体金刚石,但岩脉相中则显著减少,这一特点也说明岩脉相没有经历强烈的膨胀阶段,这与岩脉产出状态是吻合的。
具有工业品级、宝石晶级的金刚石均为曲面晶体或平面-曲面晶体,这类金刚石无疑来源于内成稳定金刚石相,金伯利岩浆的运移是将这类金刚石从上地幔搬运到地壳的浅部,同时起着熔蚀作用、浑圆化作用。膨胀金刚石相虽能形成大量金刚石,但由于粒度十分细小,因此不可能提供宝石级的加工原料。
在金伯利岩浆的运移过程中,Eo·JI奥尔洛夫将金伯利岩中金刚石全部归于熔蚀论,而0.M安舍列斯则将金刚石全归于生长论,笔者认为金刚石在岩浆运移中形成生长相-熔蚀相-生长相这一变化过程,与岩浆的演化过程是一致的。
从部分金刚石的晶粒大小、形态类型、岩石产出状态的数理统计中可以说明岩脉相、岩筒相中金刚石特征。岩筒相、岩脉相大粒宝石级的金刚石都是曲面晶体,细粒级的都是平面八面体和阶梯状八面体。
参考资料: http://www.21gem.com/ags/ags-d/d-4c/1/19.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
人造的确实如此。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询