
证明极限的唯一性
3个回答
展开全部
设{xn}极限为A,回忆一下极限定义,任取ε>0,存在N>0,当n>N时,有 |xn-A|<ε
证明极限唯一性,假设{xn}有两个极限A,B,且A>B
取ε=(A-B)/2,
存在N1,当n>N1时,有 |xn-A|<(A-B)/2 (1)
存在N2,当n>N2时,有 |xn-B|<(A-B)/2 (2)
取N=max{N1,N2},则当n>N时,上面两式同时成立
(1)可化为:(B-A)/2<xn-A<(A-B)/2,可得 (B+A)/2<xn<(A-B)/2+A
(2)可化为:(B-A)/2<xn-B<(A-B)/2,可得 (B-A)/2+B<xn<(A+B)/2
出现矛盾,一个式子是xn>(A+B)/2,另一个是xn<(A+B)/2
因此极限唯一。
证明极限唯一性,假设{xn}有两个极限A,B,且A>B
取ε=(A-B)/2,
存在N1,当n>N1时,有 |xn-A|<(A-B)/2 (1)
存在N2,当n>N2时,有 |xn-B|<(A-B)/2 (2)
取N=max{N1,N2},则当n>N时,上面两式同时成立
(1)可化为:(B-A)/2<xn-A<(A-B)/2,可得 (B+A)/2<xn<(A-B)/2+A
(2)可化为:(B-A)/2<xn-B<(A-B)/2,可得 (B-A)/2+B<xn<(A+B)/2
出现矛盾,一个式子是xn>(A+B)/2,另一个是xn<(A+B)/2
因此极限唯一。
展开全部
这个一般用反证法 我说的是一般 假设如果另一个极限 然后最后推出这两个相等
更多追问追答
追问
能把步骤写的详细一点吗?
追答
你能给我个具体的题目吗 ? 我这个是思路 你给我个题我帮你写一下吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2楼正解。。这个绝对课本上有的。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询