求助!求助高数大师!积分题目求详解
1个回答
2016-04-12
展开全部
先积 ∫1/[x(x+1)]dx
=∫1/xdx-∫1/(x+1)dx
=lnx-ln(x+1)+C
因此:
∫(ln(1+x)-lnx)/(x(x+1))dx
=∫(ln(1+x)-lnx) d[lnx-ln(x+1)]
=-(1/2)[ln(1+x)-lnx]²+C
=∫1/xdx-∫1/(x+1)dx
=lnx-ln(x+1)+C
因此:
∫(ln(1+x)-lnx)/(x(x+1))dx
=∫(ln(1+x)-lnx) d[lnx-ln(x+1)]
=-(1/2)[ln(1+x)-lnx]²+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询