Ln的运算法则 40
1、ln(MN)=lnM +lnN
2、ln(M/N)=lnM-lnN
3、ln(M^n)=nlnM
4、ln1=0
5、lne=1
注意:M>0,N>0
扩展资料:
换底公式
设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①
对①取以a为底的对数,有:log(a)(b)=m ②
对①取以c为底的对数,有:log(c)(b)=mn ③
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)
∴log(a)(b)=log(c)(b)/log(c)(a)
注:log(a)(b)表示以a为底b的对数。
换底公式拓展:
以e为底数和以a为底数的公式代换:
logae=1/(lna)
参考资料来源:百度百科-对数公式
复数运算法则有:加减法、乘除法。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
lg就是log10 例如:lg5=lg10 5
(xlogax)'=logax+1/lna
其中,logax中的a为底数,x为真数;
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x
我活了18年,除了佩服许仙敢艹蛇之外,就佩服你这种爱学习的人
ln(M/N)=lnM-lnN
ln(M^n)=nlnM
ln1=0
lne=1
注意,拆开后,M,N需要大于0
没有 ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN
lnx 是e^x的反函数,也就是说 ln(e^x)=x 求lnx等于多少,就是问 e的多少次方等于x.