广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?谢谢
展开全部
∫ 1/x^2+4x+5 dx=∫1/(x+2)²+1 dx=arctan(x+2)
所以,原式=∫<-∞,-2>1/x^2+4x+5 dx+ ∫<-2,+∞>1/x^2+4x+5 dx
=arctan(x+2)|<-∞,-2>+arctan(x+2)|<-2,+∞>
=0- (- π/2) + π/2- 0=π.
所以,原式=∫<-∞,-2>1/x^2+4x+5 dx+ ∫<-2,+∞>1/x^2+4x+5 dx
=arctan(x+2)|<-∞,-2>+arctan(x+2)|<-2,+∞>
=0- (- π/2) + π/2- 0=π.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫ 1/x^2+4x+5 dx
=∫ 1/(x+2)^2+1 dx
=arctan(x+2)(下限-∞,上限∞)=π/2-(-π/2)=π
=∫ 1/(x+2)^2+1 dx
=arctan(x+2)(下限-∞,上限∞)=π/2-(-π/2)=π
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=∫(-∞,+∞) d(x+2)/[(x+2)^2+1]
=arctan(x+2) |(-∞,+∞)
=π/2-(-π/2)
=π
=arctan(x+2) |(-∞,+∞)
=π/2-(-π/2)
=π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询