对坐标的曲线积分和对弧长的曲线积分有什么区别。 高等数学问题
1个回答
展开全部
说简单点:对弧长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分.从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘.
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线L积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线L.这个是对弧长的积分.
(2)设想有一质点在变力F(r)(F和r都是矢量,有大小有方向)的作用下,沿着轨迹S运动,如何求出某一段时间内变力F对质点所做的总功?只要把变力F(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹S积分就可以得到力对质点做的总功,即W=∫F(r)·dr,积分路径是质点运动的轨迹S.这个是对坐标的积分.(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移).当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力F在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分.这就反映出两种积分的关系:投影关系.
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线L积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线L.这个是对弧长的积分.
(2)设想有一质点在变力F(r)(F和r都是矢量,有大小有方向)的作用下,沿着轨迹S运动,如何求出某一段时间内变力F对质点所做的总功?只要把变力F(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹S积分就可以得到力对质点做的总功,即W=∫F(r)·dr,积分路径是质点运动的轨迹S.这个是对坐标的积分.(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移).当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力F在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分.这就反映出两种积分的关系:投影关系.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询