神经网络计算机的实现技术

 我来答
景飞鸣009
2016-05-28 · TA获得超过163个赞
知道答主
回答量:200
采纳率:0%
帮助的人:120万
展开全部

人工神经网络的主要特点是大量神经元之间的加权互连。这就是神经网络与光学技术相结合的重要原因。电子技术与光学技术相比,精确度高,便于程序控制,抗噪声能力强。但是,随着计算机芯片集成度和速度的提高,计算机中的引线问题已成为一个严重的障碍。由于电子引线不能互相短路交叉,引线靠近时会发生耦合,高速电脉冲在引线上传播时要发生色散和延迟,以及电子器件的扇入和扇出系数较低等问题,使得高密度的电子互连在技术上有很大困难。超大规模集成电路(VLSI)的引线问题造成的时钟扭曲(clock skew),严重限制了诺依曼型计算机的速度。而另一方面,光学互连是高度并行的,光线在传播时可以任意互相交叉而不会发生串扰,光传播速度极快,其延时和色散可以忽略不计,加上光学元件的扇入和扇出系数都很高,因此光学互连具有明显的优势。
正因如此,许多科学家早已开始研究采用光学互连来解决VLSI的引线问题,以及芯片之间、插板之间的连接问题。此外,光学运算的高度并行性和快速实现大信息量线性运算的能力,如矩阵相乘,二维线性变换,二维卷积、积分等,也是用光学手段实现人工神经网络的有利条件。光学信息处理虽有高速度及大信息量并行处理和优点,但要满足模糊运算和随机处理的要求还是远远不够的。光学信息处理性能的改进,要求在传统的线性光学处理系统中引入非线性,而这些问题的解决与神经网络的光学实现恰好不谋而合。光学信息处理中的许多课题,如光计算、图像变换、相关滤波、特征提取、边缘增强、联想存储、噪声消除等,都可以用神经网络的方法来完成。
关于光学神经网络的研究,国内外已提出许多不同的硬件系统。例如,基于光学矢量矩阵相乘的Hopfield网络的外积实现,采用全息存储和共轭反射镜(PCM)的全光学系统,采用液晶开关阵列、液晶光阀以及其它空间光调制器(SLM)的内积型光学神经网络,光电混合全双极“WTA”网络等等。光学神经网络已成为人工神经网络研究的一个重要组成部分。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式