一个特征值下有多少个特征向量
5个回答
展开全部
无数个
求解特征值,就是求解线性方程组(λI - A)x =0 的非零解,那么|λI - A|=0;求出λ,代入(λI - A)x =0 ;因为|λI - A|=0,所以(λI - A)x =0
没有唯一解,通过上一步求出的是一个基础解系,只要一个向量能被基础解系线性表示,那么这个向量就是该特征值的特征向量。
扩展资料:
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为
A矩阵未必是对称的。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
无数个;
求解特征值,就是求解线性方程组(λI - A)x =0 的非零解,那么|λI - A|=0;
求出λ,代入(λI - A)x =0 ;
因为|λI - A|=0,所以(λI - A)x =0 没有唯一解,通过上一步求出的是一个基础解系,只要一个向量能被基础解系线性表示,那么这个向量就是该特征值的特征向量。
求解特征值,就是求解线性方程组(λI - A)x =0 的非零解,那么|λI - A|=0;
求出λ,代入(λI - A)x =0 ;
因为|λI - A|=0,所以(λI - A)x =0 没有唯一解,通过上一步求出的是一个基础解系,只要一个向量能被基础解系线性表示,那么这个向量就是该特征值的特征向量。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用肉肉的风筝的回答:
无数个;
求解特征值,就是求解线性方程组(λI - A)x =0 的非零解,那么|λI - A|=0;
求出λ,代入(λI - A)x =0 ;
因为|λI - A|=0,所以(λI - A)x =0 没有唯一解,通过上一步求出的是一个基础解系,只要一个向量能被基础解系线性表示,那么这个向量就是该特征值的特征向量。
无数个;
求解特征值,就是求解线性方程组(λI - A)x =0 的非零解,那么|λI - A|=0;
求出λ,代入(λI - A)x =0 ;
因为|λI - A|=0,所以(λI - A)x =0 没有唯一解,通过上一步求出的是一个基础解系,只要一个向量能被基础解系线性表示,那么这个向量就是该特征值的特征向量。
展开全部
通解是特征向量,而通解为有数个的则特征向量也是有数个。
一个特征值可以求出多个特征向量。
一个特征值可以求出多个特征向量。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
通解都是无数个,特征向量都是无数个,因为k是任意取,一个特征值能求出n-r个基础解系,n-r个基础解系可以线性表示无数个特征向量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-06-01
展开全部
应该比较少的哦!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询