在△ABC中,a=1,b=2,求A的取值范围。 40
4个回答
展开全部
∵a=1,b=2
根据正弦定理:
a/sinA=b/sinB
sinA=1/2*sinB
∵sinB∈(0,1]
∴1/2*sinB∈(0,1/2]
∴ sinA∈(0,1/2]
∴A的取值范围是0<A≤π/6
根据正弦定理:
a/sinA=b/sinB
sinA=1/2*sinB
∵sinB∈(0,1]
∴1/2*sinB∈(0,1/2]
∴ sinA∈(0,1/2]
∴A的取值范围是0<A≤π/6
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:
【1】
由三角形三边关系可得:
b-a<c<b+a
即1<c<3
∴c∈(1.3)
【2】
由余弦定理可得:
cosA=(b²+c²-a²)/(2bc)
=(c²+3)/(4c)
∴4cosA=c+(3/c)
由对勾函数单调性可知:
2√3≤c+(3/c)<4, (∵1<c<3)
∴2√3≤4cosA<4
∴(√3)/2≤cosA<1
结合0<A<90º可知:
0<A≤30º
【1】
由三角形三边关系可得:
b-a<c<b+a
即1<c<3
∴c∈(1.3)
【2】
由余弦定理可得:
cosA=(b²+c²-a²)/(2bc)
=(c²+3)/(4c)
∴4cosA=c+(3/c)
由对勾函数单调性可知:
2√3≤c+(3/c)<4, (∵1<c<3)
∴2√3≤4cosA<4
∴(√3)/2≤cosA<1
结合0<A<90º可知:
0<A≤30º
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1<c<3
CosA=(b^2+c^2-a^2)/2bc=3/4c+c/4=(3/c+c)/4
CosA=(b^2+c^2-a^2)/2bc=3/4c+c/4=(3/c+c)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询