X(X-1)(X-2).....(X-n)求导......
3个回答
展开全部
计算过程为:
设y=x(x-1)(x-2).....(x-n),则两边取对数可以得到
lny=ln[x(x-1)(x-2).....(x-n)]
=lnx+ln(x-1)+ln(x-2)+.....+ln(x-n)
对两边求导:
y'/y=1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)
则
y'=y*[1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)]
=(x-1)(x-2)...(x-n)+x(x-2)...(x-n)+x(x-1)(x-3)...(x-n)+...+x(x-1)(x-2).....(x-n+1)
扩展资料:
常用求导公式
1、C'=0(C为常数)
2、(Xn)'=nX(n-1) (n∈R)
3、(sinX)'=cosX
4、(cosX)'=-sinX
5、(aX)'=aXIna (ln为自然对数)
6、(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)
7、(tanX)'=1/(cosX)²=(secX)²
8、(cotX)'=-1/(sinX)²=-(cscX)²
9、(secX)'=tanXsecX
10、(cscX)'=-cotXcscX
展开全部
设y=x(x-1)(x-2).....(x-n)
lny=ln[x(x-1)(x-2).....(x-n)]
lny=lnx+ln(x-1)+ln(x-2)+.....+ln(x-n)两边求导
y'/y=1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)
y'=y*[1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)]
=(x-1)(x-2)...(x-n)
+x(x-2)...(x-n)
+x(x-1)(x-3)...(x-n)
+...
+x(x-1)(x-2).....(x-n+1)
lny=ln[x(x-1)(x-2).....(x-n)]
lny=lnx+ln(x-1)+ln(x-2)+.....+ln(x-n)两边求导
y'/y=1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)
y'=y*[1/x+1/(x-1)+1/(x-2)+.....+1/(x-n)]
=(x-1)(x-2)...(x-n)
+x(x-2)...(x-n)
+x(x-1)(x-3)...(x-n)
+...
+x(x-1)(x-2).....(x-n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(X-1)(X-2).....(X-n)+
X(X-2).....(X-n)+
X(X-1)(X-3).....(X-n)+
...
X(X-1)(X-2).....(X-n+1)
X(X-2).....(X-n)+
X(X-1)(X-3).....(X-n)+
...
X(X-1)(X-2).....(X-n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询