怎样解一元3次方程

 我来答
我记得发我123
推荐于2017-11-22 · TA获得超过2493个赞
知道小有建树答主
回答量:1431
采纳率:33%
帮助的人:409万
展开全部
第一步:
ax^3+bx^2+cx+d=0(a≠0)
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=-k^2/3+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
希望对你有帮助
sdcz2005
高粉答主

2016-08-01 · 关注我不会让你失望
知道大有可为答主
回答量:1.7万
采纳率:75%
帮助的人:2420万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-09-22 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1593万
展开全部

如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ABCXYZ7777
2016-08-01 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.2万
采纳率:72%
帮助的人:1.1亿
展开全部
技巧很强。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式