
设a为实数,f(x)=x^3-ax^2+(a^2-1)x 在(-∞,0)上是增函数,求a的范围??
2个回答
展开全部
解:f‘(x)=3x^2-2ax+a^2-1
由题意得:f'(x)>=0在(-∞,0)上恒成立
即f'(x)在(-∞,0)上的最小值≥0
对f'(x)的对称轴进行讨论:
若a/3>=0,即a>=0
f’min=f‘(0)=a^2-1>=0
则a>=1
若a/3<0,即a<0
f'min=f'(a/3)=a^2/3-2a^2/3+a^2-1>=0
2a^2/3>=1
则a<=-√6/2
综上a的范围为:(负无穷,-√6/2]∪[1,正无穷)
由题意得:f'(x)>=0在(-∞,0)上恒成立
即f'(x)在(-∞,0)上的最小值≥0
对f'(x)的对称轴进行讨论:
若a/3>=0,即a>=0
f’min=f‘(0)=a^2-1>=0
则a>=1
若a/3<0,即a<0
f'min=f'(a/3)=a^2/3-2a^2/3+a^2-1>=0
2a^2/3>=1
则a<=-√6/2
综上a的范围为:(负无穷,-√6/2]∪[1,正无穷)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询