4个回答
2012-03-14
展开全部
用定积分的方法比较好理解
取余弦函数cosx在(0,2π)上的图形进行分析,将横轴上0到2π区间进行n等分,每小段长为2π/n,则余弦曲线与x轴形成的图形总代数面积和(即cosx在0到2π的定积分值)被分割成n个矩形面积代数和。
即∫cosxdx=(2π/n)∑cos(2kπ/n) 。。。左边定积分的下限为0,上限为2π
计算定积分得,左边=0=(2π/n)∑cos(2kπ/n)
∴∑cos(2kπ/n)=0
取余弦函数cosx在(0,2π)上的图形进行分析,将横轴上0到2π区间进行n等分,每小段长为2π/n,则余弦曲线与x轴形成的图形总代数面积和(即cosx在0到2π的定积分值)被分割成n个矩形面积代数和。
即∫cosxdx=(2π/n)∑cos(2kπ/n) 。。。左边定积分的下限为0,上限为2π
计算定积分得,左边=0=(2π/n)∑cos(2kπ/n)
∴∑cos(2kπ/n)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方程x^n-1=0的n个根为cos(2kpi/n)+isin(2kpi/n),1<=k<=n,根据根与系数的关系知道这n个根的和为0,故n个根的实部之和为0,虚部之和为0,而实部之和恰好就是所求表达式,因此结果是0。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询