已知函数f(x)=x^3+ax^2+bx+c,在x=1和x=-2/3处产生极值.

⑴求出f(x)的极值;⑵若对x∈[-1,2],f(x)<1/c恒成立,求c的范围.... ⑴求出f(x)的极值;⑵若对x∈[-1,2],f(x)<1/c恒成立,求c的范围. 展开
mscheng19
2012-03-14 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2279万
展开全部
1、f'(x)=3x^2+2ax+b有两个根1和-2/3,代入得3+2a+b=0,4/3-4a/3+b=0,解得a=-1/2,b=-2。故f(x)=x^3-x^2/2-2x+c,极小值f(1)=c-3/2,极大值f(-2/3)=22/27+c。
2、f(2)=2+c,f(x)在【-1,-2/3】上递增,在【-2/3,1】上递减,在【1,2】上递增,因此条件成立等价于f(x)在【-1,2】上的最大值<1/c,即2+c<1/c。解得
c<-1-根号(2)或0<c<根号(2)-1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式