求帮忙做一道题,第四题的第五小题,要过程,谢谢!
1个回答
展开全部
书写不便,lim下面的n→+∞省略
limxn=lim[n- (n^3-n^2)^(1/3)]
=lim[n- (n^3-n^2)^(1/3)] [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)] / [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim[n^3-(n^3-n^2)] / [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim(n^2)/ [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim1 / [1+1*(1-1/n)^(1/3)+(1-1/n)^(2/3)]=1/3
注意xn=xn/1,并将分子有理化
limxn=lim[n- (n^3-n^2)^(1/3)]
=lim[n- (n^3-n^2)^(1/3)] [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)] / [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim[n^3-(n^3-n^2)] / [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim(n^2)/ [n^2+n*(n^3-n^2)^(1/3)+(n^3-n^2)^(2/3)]
=lim1 / [1+1*(1-1/n)^(1/3)+(1-1/n)^(2/3)]=1/3
注意xn=xn/1,并将分子有理化
更多追问追答
追问
谢谢
不好意思,原式是Xn=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询