高等函数 求导数... 20
2个回答
展开全部
y对x求导得到
y'=f'[(x+1)/(x-1)] *[(x+1)/(x-1)]'
于是f'[(x+1)/(x-1)]=1/[(x+1)/(x-1)]²=(x-1)²/(x+1)²
而[(x+1)/(x-1)]'
=[1+2/(x-1)]'= -2/(x-1)²
所以dy/dx=(x-1)²/(x+1)² *[-2/(x-1)²]
= -2/(x+1)²
y'=f'[(x+1)/(x-1)] *[(x+1)/(x-1)]'
于是f'[(x+1)/(x-1)]=1/[(x+1)/(x-1)]²=(x-1)²/(x+1)²
而[(x+1)/(x-1)]'
=[1+2/(x-1)]'= -2/(x-1)²
所以dy/dx=(x-1)²/(x+1)² *[-2/(x-1)²]
= -2/(x+1)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询