若数列{an}满足:a1=2/3,a2=2,3(an+1-2an+an-1)=2,
(1)证明数列{an+1-an}是等差数列;(2)求使(1/a1)+(1/a2)+(1/a3)+…+(1/an)>5/2成立的最小正整数n....
(1)证明数列{an+1-an}是等差数列;
(2)求使(1/a1)+(1/a2)+(1/a3)+…+(1/an)>5/2成立的最小正整数n. 展开
(2)求使(1/a1)+(1/a2)+(1/a3)+…+(1/an)>5/2成立的最小正整数n. 展开
2个回答
展开全部
(1)
3[a(n+1)-2an+a(n-1)]=2
a(n+1)-2an+a(n-1)=2/3
a(n+1)-an-[an-a(n-1)]=2/3,为定值。
a2-a1=2-2/3=4/3
数列{a(n+1)-an}是以4/3为首项,2/3为公差的等差数列。
(2)
a(n+1)-an=4/3+(n-1)(2/3)=(2/3)(n+1)
an-a(n-1)=4/3+(n-1)(2/3)=(2/3)n
a(n-1)-an=(2/3)(n-1)
…………
a2-a1=(2/3)×2
累加
an-a1=(2/3)(1+2+3+...+n)
an=a1+(2/3)(2+3+...+n)
=(2/3)(1+2+...+n)
=(2/3)[n(n+1)/2]
=n(n+1)/3
1/an=3/[n(n+1)]=3[1/n-1/(n+1)]
1/a1+1/a2+...+1/an
=3[1/1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=3[1-1/(n+1)]
=3n/(n+1)
3n/(n+1)>5/2
n>5
又n为正整数,n最小为6。
3[a(n+1)-2an+a(n-1)]=2
a(n+1)-2an+a(n-1)=2/3
a(n+1)-an-[an-a(n-1)]=2/3,为定值。
a2-a1=2-2/3=4/3
数列{a(n+1)-an}是以4/3为首项,2/3为公差的等差数列。
(2)
a(n+1)-an=4/3+(n-1)(2/3)=(2/3)(n+1)
an-a(n-1)=4/3+(n-1)(2/3)=(2/3)n
a(n-1)-an=(2/3)(n-1)
…………
a2-a1=(2/3)×2
累加
an-a1=(2/3)(1+2+3+...+n)
an=a1+(2/3)(2+3+...+n)
=(2/3)(1+2+...+n)
=(2/3)[n(n+1)/2]
=n(n+1)/3
1/an=3/[n(n+1)]=3[1/n-1/(n+1)]
1/a1+1/a2+...+1/an
=3[1/1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=3[1-1/(n+1)]
=3n/(n+1)
3n/(n+1)>5/2
n>5
又n为正整数,n最小为6。
展开全部
(1)由 3(an+1-2an+an-1)=2 得 3(an-2an-1+an-2)=2 3(an-1-2an-2+an-3)=2 ......3(a3-2a2+a1)=2(竖着写看的比较清楚)等式左边全加起来=an+1-an-a2+a1
等式右边全加起来=2(n-1) 即an+1-an-a2+a1=2(n-1) 即an+1-an=2(n-1)+4/3=2n-2/3
{an+1-an}-{an-an-1}=2 所以{an+1-an}为等差数列
等式右边全加起来=2(n-1) 即an+1-an-a2+a1=2(n-1) 即an+1-an=2(n-1)+4/3=2n-2/3
{an+1-an}-{an-an-1}=2 所以{an+1-an}为等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询