
谁能告诉我(1+y^2)/[(1-xy)^2+(x+y)^2]化简的详细步骤
展开全部
原式=(1+y²)/[(1-2xy+x²y²)+(x²-2xy+y²)]
=(1+y²)/[1+x²+y²+x²y²]
=(1+y²)/[(1+x²)+y²(1+x²)]
=(1+y²)/[(1+x²)(1+y²)]
=1/(1+x²)
=(1+y²)/[1+x²+y²+x²y²]
=(1+y²)/[(1+x²)+y²(1+x²)]
=(1+y²)/[(1+x²)(1+y²)]
=1/(1+x²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+y^2)/[(1-xy)^2+(x+y)^2]=(1+y^2)/[(1-2xy+x^2y^2)+(x^2+2xy+y^2)]
=(1+y^2)/(1+x^2y^2+x^2+y^2)=(1+y^2)/[(1+y^2)+(x^2y^2+x^2)]=(1+y^2)/[(1+y^2)+x^2(y^2+1)]
=(1+y^2)/[(1+y^2)*(1+x^2)]=1/(1+x^2)
=(1+y^2)/(1+x^2y^2+x^2+y^2)=(1+y^2)/[(1+y^2)+(x^2y^2+x^2)]=(1+y^2)/[(1+y^2)+x^2(y^2+1)]
=(1+y^2)/[(1+y^2)*(1+x^2)]=1/(1+x^2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+y²)/[(1-xy)²+(x+y)²]
=(1+y²)/(1-2xy+x²y²+x²+2xy+y²)
=(1+y²)/(1+x²y²+x²+y²)
=(1+y²)/[(1+x²)+y²(1+x²)]
=(1+y²)/[(1+x²)(1+y²)]
=1/(1+x²)
=(1+y²)/(1-2xy+x²y²+x²+2xy+y²)
=(1+y²)/(1+x²y²+x²+y²)
=(1+y²)/[(1+x²)+y²(1+x²)]
=(1+y²)/[(1+x²)(1+y²)]
=1/(1+x²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+y^2)/[(1-xy)^2+(x+y)^2]
=(1+y^2)/[x^2y^2-2xy+1+x^2+y^2+2xy]
=(1+y^2)/[x^2y^2+x^2+y^2+1]
=(1+y^2)/[(x^2+1)(y^2+1)]
=1/(x^2+1)
=(1+y^2)/[x^2y^2-2xy+1+x^2+y^2+2xy]
=(1+y^2)/[x^2y^2+x^2+y^2+1]
=(1+y^2)/[(x^2+1)(y^2+1)]
=1/(x^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询