高数,求导,问一下:f'(t)是怎么算出来的,麻烦写一下步骤,谢谢!
1个回答
2017-02-28 · 知道合伙人教育行家
关注
展开全部
首先,
[√(1+t²)]'=[(1+t²)^(1/2)]'
=1/2·(1+t²)^(-1/2)·(1+t²)'
=t/√(1+t²)
所以,
f'(t)=ln[t+√(1+t²)]+t·{ln[t+√(1+t²)]}'-t/√(1+t²)
=ln[t+√(1+t²)]+t/[t+√(1+t²)]·[t+√(1+t²)]'
-t/√(1+t²)
=ln[t+√(1+t²)]+t/[t+√(1+t²)]·[1+x/√(1+t²)]
-t/√(1+t²)
=ln[t+√(1+t²)]+t/√(1+t²)-t/√(1+t²)
=ln[t+√(1+t²)]
【附注】一个重要结论
{ln[t+√(1+t²)]}'=1/√(1+t²)
[√(1+t²)]'=[(1+t²)^(1/2)]'
=1/2·(1+t²)^(-1/2)·(1+t²)'
=t/√(1+t²)
所以,
f'(t)=ln[t+√(1+t²)]+t·{ln[t+√(1+t²)]}'-t/√(1+t²)
=ln[t+√(1+t²)]+t/[t+√(1+t²)]·[t+√(1+t²)]'
-t/√(1+t²)
=ln[t+√(1+t²)]+t/[t+√(1+t²)]·[1+x/√(1+t²)]
-t/√(1+t²)
=ln[t+√(1+t²)]+t/√(1+t²)-t/√(1+t²)
=ln[t+√(1+t²)]
【附注】一个重要结论
{ln[t+√(1+t²)]}'=1/√(1+t²)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |