
只能是两把45°的三角尺才符合题意拼成直角三角形。
等腰直角三角尺的两个锐角都是45°。两个完全一样的等腰直角三角尺可以拼成一个正方形,也可以拼成一个更大的等腰直角三角形。等腰直角三角尺的两条直角边长度相等。
细长三角尺的锐角分别是30°和60°。两个完全一样的细长三角尺可以拼成一个正三角形。细长三角尺的斜边长度是短直角边长度的两倍。
扩展资料:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
参考资料来源:百度百科-直角三角形
可以,两把45°的三角尺才符合题意拼成直角三角形。
等腰直角三角尺的两个锐角都是45°。两个完全一样的等腰直角三角尺可以拼成一个正方形,也可以拼成一个更大的等腰直角三角形。等腰直角三角尺的两条直角边长度相等。
细长三角尺的锐角分别是30°和60°。两个完全一样的细长三角尺可以拼成一个正三角形。细长三角尺的斜边长度是短直角边长度的两倍。
直角三角形具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB²+AC²=BC²(勾股定理)。
2、在直角三角形中,两个锐角互余。若∠BAC=90°,则∠B+∠C=90°。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。