求∫x²/(x²+1)²dx
名片
2024-10-28 广告
2024-10-28 广告
作为优菁科技(上海)有限公司的工作人员,关于HyperWorks官网,我无法直接提供具体的网址,但我可以简要介绍其特点。HyperWorks官网是Altair公司官方推出的平台,专为工程仿真领域用户设计。该官网汇集了丰富的软件资源、技术文档...
点击进入详情页
本回答由名片提供
展开全部
∫x^2/(x^2+1)^2dx
let
x=tanu
dx=(secu)^2 du
∫[x^2/(x^2+1)^2 ]dx
=∫[ (tanu)^2/(secu)^4 ] [(secu)^2 du]
=∫[ (tanu)^2/(secu)^2 ] du
=∫ (sinu)^2 du
=(1/2)∫ ( 1- cos2u) du
=(1/2)( u- (1/2)sin2u) +C
=(1/2)[ arctanx - x/(x^2+1) ] +C
let
x=tanu
dx=(secu)^2 du
∫[x^2/(x^2+1)^2 ]dx
=∫[ (tanu)^2/(secu)^4 ] [(secu)^2 du]
=∫[ (tanu)^2/(secu)^2 ] du
=∫ (sinu)^2 du
=(1/2)∫ ( 1- cos2u) du
=(1/2)( u- (1/2)sin2u) +C
=(1/2)[ arctanx - x/(x^2+1) ] +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询