数列1,3,6,10,15,21.有通项公式和前n项和公式吗
有。
1、通项公式为n(n+1)/2。
仔细观察数列1,3,6,10,15…可以发现:
(1)1=1
(2)3=1+2
(3)6=1+2+3
(4)10=1+2+3+4
(5)15=1+2+3+4+5
……
(6)第n项为:1+2+3+4+…+n= n(n+1)/2。(1、2、3、4、5……n,是一个以1为首项,1为公差的等差数列,第n项就是对其求和)
2、前n项和公式为(n^3 - n)/6。
仔细观察数列1,3,6,10,15…可以发现:
3-1=2
6-3=3
10-6=4
15-10=5
21-15=6
an-a(n-1) =n
a(n-1)-a(n-2)=n-1
a(n-2)-a(n-3)=n-2
…..
a2-a1=2
累加得
an=n(n+1)/2
因为 an = (n-1)n/2 = (1/2)n^2 - (1/2)n
所以 S = 1/2(1^2 + 2^2 + .+ n^2) - 1/2(1+2+3+.+n)
= (1/2)*[n(n+1)(2n+1)/6] - (1/2)*[n(n+1)/2]
= n(n^2 - 1)/6
= (n^3 - n)/6
扩展资料
求数列通项公式的基本方法:
累加法
递推公式为a(n+1)=an+f(n),且f(n)可以求和
例:数列{an},满足a1=1/2,a(n+1)=an+1/(4n^2-1),求{an}通项公式
解:a(n+1)=an+1/(4n^2-1)=an+[1/(2n-1)-1/(2n+1)]/2
∴an=a1+(1-1/3+1/3-1/5+……+1/(2n-3)-1/(2n-1))
∴an=1/2+1/2 (1-1/(2n-1))=(4n-3)/(4n-2)
累乘法
递推公式为a(n+1)/an=f(n),且f(n)可求积
例:数列{an}满足a(n+1)=(n+2)/n an,且a1=4,求an
解:an/a1=an/a(n-1)×a(n-1)/a(n-2)×……×a2/a1=2n(n+1)
构造法
将非等差数列、等比数列,转换成相关的等差等比数列
适当的进行运算变形
例:{an}中,a1=3,a(n+1)=an^2,求an
解:ln a(n+1)=ln an^2=2ln an
∴{ln an}是等比数列,q=2,首项为ln3
∴ln an =(2^(n-1))ln3
故an=3^[2^(n-1)])
数列的通项式为an=n(n+1)/2。数列前n项和为S=(n^3-n)/6。
解:令数列an,其中a1=1,a2=3,a3=6,a4=10,a5=15,a6=21。
那么观察可得,a1=1,a2=3=1+2=a1+2,a3=6=3+3=a2+3,
a4=10=6+4=a3+4,a5=15=10+5=a4+5,a6=21=15+6=a5+6。
则可得an=a(n-1)+n=a(n-2)+(n-1)+n=...=a2+3+4+...+(n-1)+n
=a1+2+3+4+...+(n-1)+n=1+2+3+4+...+(n-1)+n=n(n+1)/2。
即an的通项式为an=n(n+1)/2。
又因为an = (n-1)n/2 = n^2 /2- n/2
所以数列an前n项和S= 1/2(1^2 + 2^2 +...+ n^2)-1/2(1+2+3+...+n)
= (1/2)*(n(n+1)(2n+1)/6) - (1/2)*(n(n+1)/2)
= n(n^2-1)/6
= (n^3-n)/6
即数列an前n项和为S=(n^3-n)/6。
扩展资料:
1、数列的分类
数列可分为有穷数列和无穷数列、周期数列、常数数列等类型。
2、数列的公式
(1)通项公式
数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。
例:an=3n+2
(2)递推公式
如果数列an的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
例:an=a(n-1)+a(n-2)
参考资料来源:百度百科-数列
两边分别相加,a2+a3+…+an-1+an=a1+a2+…+an-1+2+3+4+…+n,
an=a1+(2+n)*(n-1)/2
即an=1+(n^2+n-2)/2=(n^2+n)/2=n(n+1)/2
2017-09-23
3=1+2
6=1+2+3
10=1+2+3+4
S=n*(n+1)/2; (n=1,2,3,4)