1个回答
展开全部
∫ x/(3 - 2x²) dx
= ∫ 1/(3 - 2x²) d(x²/2)
= (1/2)(-1/2)∫ 1/(3 - 2x²) d(-2x²)
= (-1/4)∫ 1/(3 - 2x²) d(3 -2x²)
= (-1/4)ln|3 - 2x²| + C
∫ dx/(√x + 1)
= ∫ 1/(√x + 1) * (2√x)/(2√x) dx
= 2∫ (√x + 1 - 1)/(√x + 1) * d√x
= 2∫ d√x - 2∫ 1/(√x + 1) d(√x + 1)
= 2√x - 2ln(1 + √x) + C
两题都是凑微分法
= ∫ 1/(3 - 2x²) d(x²/2)
= (1/2)(-1/2)∫ 1/(3 - 2x²) d(-2x²)
= (-1/4)∫ 1/(3 - 2x²) d(3 -2x²)
= (-1/4)ln|3 - 2x²| + C
∫ dx/(√x + 1)
= ∫ 1/(√x + 1) * (2√x)/(2√x) dx
= 2∫ (√x + 1 - 1)/(√x + 1) * d√x
= 2∫ d√x - 2∫ 1/(√x + 1) d(√x + 1)
= 2√x - 2ln(1 + √x) + C
两题都是凑微分法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询