已知x^2+2y^2+3z^2=18/17.求3x+2y+z的最小值。 用柯西不等式
2个回答
展开全部
楼上柯西不等式写错了,柯西不等式为(a1^2+a2^2+……)(b1^2+b2^2+……)≥(a1b1+a2b2+……)^2 注意:柯西不等式对于全体实数都满足。因而有:
(x^2+2y^2+3z^2)(9+2+1/3)≥(3x+2y+z)^2
-√(18/17*34/13)≤3x+2y+z≤√(18/17*34/13)
即最小值为-2√3,当且仅当x=-(9√3)/17,y=(-3√3)/17,z=(-√3)/17
(用不等式求最值时不要忘记检验等号成立条件哦,正规考试时这步有分的哦)
(x^2+2y^2+3z^2)(9+2+1/3)≥(3x+2y+z)^2
-√(18/17*34/13)≤3x+2y+z≤√(18/17*34/13)
即最小值为-2√3,当且仅当x=-(9√3)/17,y=(-3√3)/17,z=(-√3)/17
(用不等式求最值时不要忘记检验等号成立条件哦,正规考试时这步有分的哦)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询