已知x^2+2y^2+3z^2=18/17.求3x+2y+z的最小值。 用柯西不等式

我非常想知道
2012-03-17 · TA获得超过246个赞
知道答主
回答量:69
采纳率:0%
帮助的人:88.8万
展开全部
楼上柯西不等式写错了,柯西不等式为(a1^2+a2^2+……)(b1^2+b2^2+……)≥(a1b1+a2b2+……)^2 注意:柯西不等式对于全体实数都满足。因而有:
(x^2+2y^2+3z^2)(9+2+1/3)≥(3x+2y+z)^2
-√(18/17*34/13)≤3x+2y+z≤√(18/17*34/13)
即最小值为-2√3,当且仅当x=-(9√3)/17,y=(-3√3)/17,z=(-√3)/17
(用不等式求最值时不要忘记检验等号成立条件哦,正规考试时这步有分的哦)
worldbl
2012-03-17 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3423万
展开全部
由柯西不等式,得 [x² +(√2y)²+(√3z²)][(3²+(√2)²+(1/√3)²]≥3x+2y+z
即 (x²=2y²+3z²)(34/3)≥3x+2y+z
3x+2y+z≤(18/17)(34/3)=12
即 3x+2y+z的最大值为12
追问
题目是最小值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式