观察规律 1/1×2=1-1/2,1/2×3=1/2-1/3,1/3×4=1/3-1/4 求和1/1×2+1/2×3+1/3×4+....+1/2009×2010
3个回答
展开全部
解:
(1)
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)证明:
等式右边=(1/n)-[1/(n+1)]
=(n+1)/[n(n+1)]-n/[n(n+1)]
=(n+1-n)/[n(n+1)]
=1/[n(n+1)]
=左边
所以等式成立
(3)求和:观察后可以发现好多项可以相互抵消
1/(1×2)+1/(2×3)+1/(3×4)+……+1/(2009×2010)
=1-1/2+1/2-1/3+1/3-1/4+-------+1/2008-1/2009+1/2009-1/2010
=1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+-------+1/2008+(-1/2009+1/2009)-1/2010
=1-1/2010
=2009/2010
(1)
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)证明:
等式右边=(1/n)-[1/(n+1)]
=(n+1)/[n(n+1)]-n/[n(n+1)]
=(n+1-n)/[n(n+1)]
=1/[n(n+1)]
=左边
所以等式成立
(3)求和:观察后可以发现好多项可以相互抵消
1/(1×2)+1/(2×3)+1/(3×4)+……+1/(2009×2010)
=1-1/2+1/2-1/3+1/3-1/4+-------+1/2008-1/2009+1/2009-1/2010
=1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+-------+1/2008+(-1/2009+1/2009)-1/2010
=1-1/2010
=2009/2010
展开全部
将1/1×2=1-1/2,1/2×3=1/2-1/3,1/3×4=1/3-1/4排成一列相加可知,剩余第一项跟最后一项,所以
1/1×2+1/2×3+1/3×4+....+1/2009×2010=1-1/2010=2009/2010
1/1×2+1/2×3+1/3×4+....+1/2009×2010=1-1/2010=2009/2010
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分数裂项题:
1/1×2+1/2×3+1/3×4+....+1/2009×2010
=1-1/2+1/2-1/3+1/3-1/4+……+1/2009-1/2010
=1-1/2010
=2009/2010
1/1×2+1/2×3+1/3×4+....+1/2009×2010
=1-1/2+1/2-1/3+1/3-1/4+……+1/2009-1/2010
=1-1/2010
=2009/2010
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询