3个回答
展开全部
sinx/(1+sinx)
=2sin(x/2)cos(x/2)/【sin²(x/2)+2sin(x/2)cos(x/2)+cos²(x/2)】
=2tan(x/2)/(tan²(x/2)+2tan(x/2)+1)
=2tan(x/2)/(1+tan(x/2))²
设t=tan(x/2),x=2arctant,dx=2/(1+t²).dt
x=0~π/4,t=tan(x/2)=tan0~tan(π/8)=0~tan(π/8),
换元:
∫(0,tan(π/8))2t/(1+t)².2/(1+t²).dt
=2∫(0,tan(π/8))2t/[(1+t)²(1+t²)].dt
=2∫(0,tan(π/8))[(1+2t+t²)-(1+t²)]/[(1+t)²(1+t²)].dt
=2∫(0,tan(π/8))[1/(1+t²)-1/(1+t)²]dt
=2[arctant+1/(1+t)](0,tan(π/8))
=2[π/8+1/(1+tan(π/8))-(0+1)]
=π/4+2/(1+tan(π/8))-2
设:
=2sin(x/2)cos(x/2)/【sin²(x/2)+2sin(x/2)cos(x/2)+cos²(x/2)】
=2tan(x/2)/(tan²(x/2)+2tan(x/2)+1)
=2tan(x/2)/(1+tan(x/2))²
设t=tan(x/2),x=2arctant,dx=2/(1+t²).dt
x=0~π/4,t=tan(x/2)=tan0~tan(π/8)=0~tan(π/8),
换元:
∫(0,tan(π/8))2t/(1+t)².2/(1+t²).dt
=2∫(0,tan(π/8))2t/[(1+t)²(1+t²)].dt
=2∫(0,tan(π/8))[(1+2t+t²)-(1+t²)]/[(1+t)²(1+t²)].dt
=2∫(0,tan(π/8))[1/(1+t²)-1/(1+t)²]dt
=2[arctant+1/(1+t)](0,tan(π/8))
=2[π/8+1/(1+tan(π/8))-(0+1)]
=π/4+2/(1+tan(π/8))-2
设:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=∫1-1/(1+cos(x-π/2)d(x-π/2)
=x-∫(-π/2到-π/4)1/2cos²(u/2)du
=π/4-∫sec²(u/2)d(u/2)
=π/4-tan(u/2)
=π/4-(tanπ/4-tanπ/8)
=π/4-(1-(√2-1))
=π/4+√2-2
=x-∫(-π/2到-π/4)1/2cos²(u/2)du
=π/4-∫sec²(u/2)d(u/2)
=π/4-tan(u/2)
=π/4-(tanπ/4-tanπ/8)
=π/4-(1-(√2-1))
=π/4+√2-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询