设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),

设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n1)求角A的大小2)若... 设三角形ABC的内角A,B,C,所对的边长分别为a,b,c,向量m=(cosA,cosC),向量n=(根号3c-2b,根号3a),且向量m垂直向量n
1)求角A的大小
2)若角B=派\6,BC边上的中线AM的长为根号7,求三角形ABC的面积
展开
tllau38
高粉答主

2012-03-20 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
(1)
m=(cosA,cosC), n=(√3c-2b,√3a)
m垂直向量n
=>m.n=0
(cosA,cosC).(√3c-2b,√3a)=0
(√3c-2b)cosA+ √3a(cosC)=0
(√3c-2b)(b^2+c^2-a^2)/(2bc)+ √3(a^2+b^2-c^2)/(2b) =0
-(b^2+c^2-a^2)/c +(√3/(2b))(2b^2) =0
(b^2+c^2-a^2) = √3bc
a^2=b^2+c^2 -√3bc
by cosine rule
-√3bc = -2bc cosA
cosA =√3/2
A = π/6
(2)
B=π/6, M is mid point of BC
|AM| = √7

A=B => a=b
by sine rule
c/sinC = a/sinA
c = √3a
consider 三角形ABM
|AM|^2 = c^2 +(a/2)^2 - (ac)cosB
7 = 3a^2+a^/4 - (3/2)a^2
7 = 7a^2/4
a^2 = 4
a=2

三角形ABC的面积
=(1/2)absinC
=(1/2)a^2 ( √3/2)
=(1/2)4(√3/2))
= √3
方在利用
2012-03-18
知道答主
回答量:7
采纳率:0%
帮助的人:1.1万
展开全部
书上有公式 ,看了就知道了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cai1264380160
2012-03-27
知道答主
回答量:43
采纳率:0%
帮助的人:11.4万
展开全部
asdsa
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式