求算∫上限根号下(3)/2下限0arc cos x dx!
1个回答
展开全部
令arccosx=u,则x=cosu
∫[0:√3/2]arccosxdx
=∫[π/2:π/6]ud(cosu)
=ucosu|[[π/2:π/6]-∫[π/2:π/6]cosudu
=(π/6)cos(π/6)-(π/2)cos(π/2)-sinu|[π/2:π/6]
=(π/6)(√3/2)-0-[sin(π/6)-sin(π/2)]
=√3π/12 - 1/2 +1
=(√3π+6)/12
∫[0:√3/2]arccosxdx
=∫[π/2:π/6]ud(cosu)
=ucosu|[[π/2:π/6]-∫[π/2:π/6]cosudu
=(π/6)cos(π/6)-(π/2)cos(π/2)-sinu|[π/2:π/6]
=(π/6)(√3/2)-0-[sin(π/6)-sin(π/2)]
=√3π/12 - 1/2 +1
=(√3π+6)/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询