正弦信号的功率谱密度是什么以及物理意义
一、正弦信号的功率谱密度及其物理意义:
正弦信号的功率谱密度,指正弦信号的谱功率分布(spectral power distribution, SPD)。它代表的物理意义是:在物理学中,正弦信号的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为正弦信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
二、相关术语解释:
1、正弦信号:是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以通过傅里叶变换分解为许多频率不同、幅度不等的正弦信号的迭加。
2、功率谱(power spectrum):是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。由于功率没有负值,所以功率谱曲线上的纵坐标也没有负数值,功率谱曲线所覆盖的面积在数值上等于信号的总功率(能量)。
3、功率谱密度(power spectral density,简写PSD):别名为“谱功率分布”。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
三、参考资料及网址:
1、《正弦信号》:
http://baike.baidu.com/view/696288.htm;
2、《功率谱密度》:
3、《功率谱》:
http://baike.baidu.com/view/356116.htm;
4、《随机振动--第7章-功率谱密度》:
正弦信号的功率谱密度,指正弦信号的谱功率分布(spectral power distribution, SPD)。它代表的物理意义是:在物理学中,正弦信号的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,
这被称为正弦信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
扩展资料
正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。工业及照明用电就是正弦信号。振荡电路输出的正弦波一般都含有谐波分量,方波就是由一系列的谐波分量叠加而成。以上这些优点给运算带来了许多方便,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用。
参考资料
正弦信号的功率谱密度,指正弦信号的谱功率分布。在物理学中,信号通常是波的形式表示,例如电磁波、随机振动或者声波。当波的功率频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度,那么正弦信号的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为正弦信号的功率谱密度。
上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
拓展资料
1、正弦信号:是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以通过傅里叶变换分解为许多频率不同、幅度不等的正弦信号的迭加。
2、功率谱(power spectrum):是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。由于功率没有负值,所以功率谱曲线上的纵坐标也没有负数值,功率谱曲线所覆盖的面积在数值上等于信号的总功率(能量)。
3、功率谱密度(power spectral density,简写PSD):别名为“谱功率分布”。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
正弦信号的功率谱密度,指正弦信号的谱功率分布(spectral power distribution, SPD)。
它代表的物理意义是:在物理学中,正弦信号的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为正弦信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。
功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
拓展资料:
1、功率谱密度(power spectral density,简写PSD):在物理学中,信号通常是波的形式表示,例如电磁波、随机振动或者声波。当波的功率频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD);不要和 spectral power distribution(SPD) 混淆。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,后者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
尽管并非一定要为信号或者它的变量赋予一定的物理量纲,下面的讨论中假设信号在时域内变化。
上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示为:
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
2、功率谱(power spectrum):是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。由于功率没有负值,所以功率谱曲线上的纵坐标也没有负数值,功率谱曲线所覆盖的面积在数值上等于信号的总功率(能量)。
3、正弦信号:是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以通过傅里叶变换分解为许多频率不同、幅度不等的正弦信号的迭加。
参考链接:百度百科-功率谱密度
广告 您可能关注的内容 |