C++汉诺塔问题思路

 我来答
百度网友d7d63b9
2012-03-21 · TA获得超过1118个赞
知道小有建树答主
回答量:532
采纳率:0%
帮助的人:268万
展开全部
哈哈 很简单的:我说下递归的理解方法(拿你说的汉诺塔做例子),简单的话给我加分哦 ~亲
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的。(借用一下楼下的代码 呵呵)
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,看楼下的主程里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。

参考资料: 大连理工大学软件学院某某同学

次元说
2021-05-29
知道答主
回答量:28
采纳率:100%
帮助的人:1.3万
展开全部

汉诺塔问题怎么解决,可以利用递归法来解决。设移动盘子数为n,为了将这n个盘子从A杆移动到C杆,可以以C盘为中介,从A杆将1至n-1号盘移至B杆。将A杆中剩下的第n号盘移至C杆。以A杆为中介;从B杆将1至n-1号盘移至C杆。这样汉诺塔问题就解决了

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
晨扬钟m
2012-03-18 · TA获得超过101个赞
知道答主
回答量:128
采纳率:0%
帮助的人:72.6万
展开全部
#include <stdio.h>
int main()
{
void hanoi(int n,char one,char two,char three); // 对hanoi函数的声明
int m;
printf("input the number of diskes:");
scanf("%d",&m);
printf("The step to move %d diskes:\n",m);
hanoi(m,'A','C','B');
}

void hanoi(int n,char one,char two,char three) // 定义hanoi函数
// 将n个盘从one座借助two座,移到three座
{
void move(char x,char y); // 对move函数的声明
if(n==1)
move(one,three);
else
{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

void move(char x,char y) // 定义move函数
{
printf("%c-->%c\n",x,y);
}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式