初一不等式的练习题

幻链之翼
2012-03-22 · TA获得超过1680个赞
知道小有建树答主
回答量:150
采纳率:0%
帮助的人:115万
展开全部
不等式练习题
一、 选择题
1.下列式子①3x=5;②a>2;③3m-1≤4;④5x+6y;⑤a+2≠a-2;⑥-1>2中,不等式有( )个
A、2 B、3 C、4 D、5
2.下列不等关系中,正确的是( )
A、 a不是负数表示为a>0; B、x不大于5可表示为x>5
C、x与1的和是非负数可表示为x+1>0;D、m与4的差是负数可表示为m-4<0
3.若m<n,则下列各式中正确的是( )
A、m-2>n-2 B、2m>2n C、-2m>-2n D、
4.下列说法错误的是( )
A、1不是x≥2的解 B、0是x<1的一个解
C、不等式x+3>3的解是x>0 D、x=6是x-7<0的解集
5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x+3>2成立的数有( )个. A、2 B、3 C、4 D、5
6.不等式x-2>3的解集是( )A、x>2 B、x>3 C、x>5 D、x<5
7.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是( )
A、a>0 B、a<0 C、a>-1 D、a<-1
8.已知关于x的不等式x-a<1的解集为x<2,则a的取值是( )
A、0 B、1 C、2 D、3
9.满足不等式x-1≤3的自然数是( )
A、1,2,3,4 B、0,1,2,3,4 C、0,1,2,3 D、无穷多个
10.下列说法中:①若a>b,则a-b>0;②若a>b,则ac2>bc2;③若ac>bc,则a>b;④若ac2>bc2,则a>b.正确的有( )
A、1个 B、2个 C、3个 D、4个
11.下列表达中正确的是( )
A、若x2>x,则x<0 B、若x2>0,则x>0
C、若x<1则x2<x D、若x<0,则x2>x
12.如果不等式ax<b的解集是x< ,那么a的取值范围是( )
A、a≥0 B、a≤0 C、a>0 D、a<0
二、 填空题
1.不等式2x<5的解有________个.
2.“a的3倍与b的差小于0”用不等式可表示为_______________.
3.如果一个三角形的三条边长分别为5,7,x,则x的取值范围是______________.
4.在-2<x≤3中,整数解有__________________.
5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x+3=0的解;_______是不等式x+3>0的解;___________________是不等式x+3>0.
6.不等式6-x≤0的解集是__________.
7.用“<”或“>”填空:
(1)若x>y,则- ; (2)若x+2>y+2,则-x______-y;
(3)若a>b,则1-a ________ 1-b;(4)已知 x-5< y-5,则x ___ y.
8.若∣m-3∣=3-m,则m的取值范围是__________.
9.不等式2x-1>5的解集为________________.
10.若6-5a>6-6b,则a与b的大小关系是____________.
11.若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________.
12.三个连续正整数的和不大于12,符合条件的正整数共有________组.
13.如果a<-2,那么a与 的大小关系是___________.
14.由x>y,得ax≤ay,则a ______0
三、 解答题
1.根据下列的数量关系,列出不等式
(1)x与1的和是正数
(2)y的2倍与1的和大于3
(3)x的 与x的2倍的和是非正数
(4)c与4的和的30%不大于-2
(5)x除以2的商加上2,至多为5
(6)a与b的和的平方不小于2
2.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.
(1)4x+3<3x (2)4-x≥4

(3) 2x-4≥0 (4)- x+2>5

3.已知有理数m、n的位置在数轴上如图所示,用不等号填空.
(1)n-m ____0; (2)m+n _____0; (3)m-n ____0;
(4)n+1 ____0; (5)mn ____0; (6)m-1____0.

4.已知不等式5x-2<6x+1的最小正整数解是方程3x- ax=6的解,求a的值.

5.试写出四个不等式,使它们的解集分别满足下列条件:
(1) x=2是不等式的一个解;
(2) -2,-1,0都是不等式的解;
(3) 不等式的正整数解只有1,2,3;
(4) 不等式的整数解只有-2,-1,0,1.
6.已知两个正整数的和与积相等,求这两个正整数.
解:不妨设这两个正整数为a、b,且a ≤b,由题意得:
ab=a+b ①
则ab=a+b≤b+b=2b,∴a≤2
∵a为正整数,∴a=1或2.
(1) 当a=1时,代入①式得1•b=1+b不存在
(2) 当a=2时,代入①式得2•b=2+b,∴b=2.
因此,这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考:是否存在三个正整数,它们的和与积相等?试说明你的理由.

7.根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.

⒈若一个角的余角不大于它的补角的1/3,则这个角的范围是()
⒉某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=售价-进价/进价*100%)不底于5%,则至少可打()
A.6折
B.7折
C.8折
D.9折

⒊在下列不等式中,与3-2x/3≤-1的解集相同的是()
A.2x+6≥0
B.2x-6≤0
C.2x-6≥0
D.2x+6≤0
⒋不等式3/7x≥5/4x成立的条件是()

⒌学生体质评价指标规定:握力体重指数m=(握力/体重)*100,七年级男生的合格标准是m≥30。若七年级某男生的体重是45kg,那么他的握力至少要达到()kg时才能合格 2x<3(x-3)+1,

6.关于x的不等式组{ 3x+2/4>x+a 有四个整数解,求a的取值范围

7.如果不等式组{ 4b-3x<3a 的解集为5<x<10,求a、b的值。

某校师生要去外地参加夏令营,车站提出2种车票票价,第一种是教师按原价付款,学生按原价的78%付款:第2种方案是师生按原价的80%付款,该校有5名教师,试根据参加夏令营的学生人数,选购票付款的最佳方案 8.若不等式2X—M小于等于0只有3个正整数解,求正整数M的取值范围 9.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由
沵说沵很害怕A
2012-08-01
知道答主
回答量:14
采纳率:0%
帮助的人:2.2万
展开全部
,,,,,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式