e的负X的平方次幂的积分函数的极限如何得到??

教育小百科达人
2019-05-12 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

设u=∫[-∞,+∞] e^(-t^2)dt

两边平方: 下面省略积分限

u^2=∫e^(-t^2)dt*∫e^(-t^2)dt 由于积分可以随便换积分变量

=∫e^(-x^2)dx*∫e^(-y^2)dy 这样变成一个二重积分

=∫∫ e^(-x^2-y^2)dxdy 积分区域为x^2+y^2=R^2 R-->+∞

用极坐标

=∫∫ e^(-r^2)*rdrdθ

=∫ [0-->2π]∫ [0-->R] e^(-r^2)*rdrdθ 然后R-->+∞取极限

=2π*(1/2)∫ [0-->R] e^(-r^2)d (r^2)

=π[1-e^(-R^2)] 然后R-->+∞取极限

这样u^2=π,因此u=√π

扩展资料:

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小

平方求幂可以看作是一个次优的加法链求幂算法:它通过由重复指数加倍(平方)和指数递增(乘以x)组成的加法链来计算指数。更一般地,如果允许任何先前计算的指数相加(通过乘以x的幂),有时可以让求幂运算的乘法次数更少(但通常使用更多的内存)。

参考资料来源:百度百科——函数极限

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
丘冷萱Ad
推荐于2017-11-25 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3904万
展开全部
你是想问 ∫[-∞,+∞] e^(-t^2)dt 的结果是如何算的吧?
给你一个不是很严密的做法,严格做法在同济大学高等数学教材中有(下册二重积分极坐标部分)
设u=∫[-∞,+∞] e^(-t^2)dt
两边平方: 下面省略积分限
u^2=∫e^(-t^2)dt*∫e^(-t^2)dt 由于积分可以随便换积分变量
=∫e^(-x^2)dx*∫e^(-y^2)dy 这样变成一个二重积分
=∫∫ e^(-x^2-y^2)dxdy 积分区域为x^2+y^2=R^2 R-->+∞
用极坐标
=∫∫ e^(-r^2)*rdrdθ
=∫ [0-->2π]∫ [0-->R] e^(-r^2)*rdrdθ 然后R-->+∞取极限
=2π*(1/2)∫ [0-->R] e^(-r^2)d (r^2)
=π[1-e^(-R^2)] 然后R-->+∞取极限

这样u^2=π,因此u=√π

本题不严密处在于,化为二重积分时,其实不应该是一个圆形区域,而应该是矩形区域,书上有这个处理方法,利用夹逼准则将矩形区域夹在两个圆形区域之间来解决这个问题。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云已被雾遮住
2012-03-18 · 超过41用户采纳过TA的回答
知道小有建树答主
回答量:162
采纳率:0%
帮助的人:117万
展开全部
x趋于什么?
追问
x趋近正无穷
追答
先求对数的极限
lnlim(x->∞)∫e^-x^2dx
=lim(x->∞)∫-x^2dx
=lim(x->∞)-1/3x^3
求出lnlim(x->∞)∫e^-x^2dx趋于-∞
所以lim(x->∞)∫e^-x^2dx趋于0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式