如图,在△ABC中,AB=AC。(1)若P为边BC上的中点,连接AP,求证BP*CP=AB²-AP²
展开全部
证:∵AB=AC
∴△ABC是以BC为底边的等腰三角形。
又∵P为BC中点,
∴AP⊥BC(等腰三角形三线合一定理)
即,△ABP为直角三角形
∴BP² = AB²-AP²
而,BP=CP
∴BP² = BP*CP = AB²-AP²
∴△ABC是以BC为底边的等腰三角形。
又∵P为BC中点,
∴AP⊥BC(等腰三角形三线合一定理)
即,△ABP为直角三角形
∴BP² = AB²-AP²
而,BP=CP
∴BP² = BP*CP = AB²-AP²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵AB=AC,BP=CP
∴AP⊥BC
∴AP²+BP²=AB²
AB²-AP²=BP²
又∵BP=CP
∴BP·CP=BP²
∴AB²-AP²=BP·CP
∴AP⊥BC
∴AP²+BP²=AB²
AB²-AP²=BP²
又∵BP=CP
∴BP·CP=BP²
∴AB²-AP²=BP·CP
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询